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Materials Databases: The Need for Open, Interoperable
Databases with Standardized Data and Rich Metadata

François-Xavier Coudert

Driven by the recent rapid increase in the number of materials databases
published (open and commercial), some perspectives on the growing need for
standardized, interoperable, open databases are discussed here. The field of
computational materials discovery is quickly expanding, and recent advances
in data mining, high-throughput screening, and machine learning highlight
the potential of open databases.

1. Introduction

One of the recent important trends in materials science is the
emergence of several large-scale online databases of materials,
trying to bring together experimental data with computational
techniques in order to understand the behavior of materials fam-
ilies and design novel materials through data-mining? Maybe
the most visible efforts in this area are the Materials Project,[1]

a database of computed information on known and predicted
properties, part of the US-funded Materials Genome Initiative[2]

launched in 2011; and the very similar AFLOW initiative, a dis-
tributedmaterials properties repository fromhigh-throughput ab
initio calculations.[3] However, this trend is more general, and an
increasing amount of research in the field focuses on the gen-
eration of these databases, their extension with additional data,
and the use of these databases for analysis, screening, and pre-
diction. This was clearly exemplified at recent materials meet-
ings and materials modeling workshop, such as the MOFSIM
2019[4] meeting whose excellent discussion provoked this short
comment.

2. Existing Databases

The need for aggregation of curated data in the physical and
chemical sciences was recognized very early, and possibly the
best-known database in our field is the CRCHandbook of Chem-
istry and Physics[5] (also known as the “rubber book”), which
has been published since 1914. When it comes to materials,
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databases ranging in size and scope have
emerged since the beginning of comput-
ing, and have advanced at the same pace
as both computer hardware and network-
ing capabilities. The Cambridge Structural
Database (CSD),[6] launched in 1965, is one
of the first numerical scientific databases,
operating as a repository for validated ex-
perimental crystal structures of organic
and organometallic compounds. Additional

structural databases have emerged focusing on other categories
of materials, including the Inorganic Crystal Structure Database
(ICSD),[7] the Protein Data Bank (PDB),[8] the American Mineral-
ogist Crystal Structure Database,[9] and the Crystallography Open
Database (COD).[10]

In addition to these structural databases, databases of materi-
als properties have also been compiled, either by standardization
institutes, learned societies, or commercial entities. We can cite
examples of the NIST databases for materials and fluids prop-
erties, the glass property database SciGlass, Pearson’s Crystal
Data, or more specific examples like the Polymer Gas Separation
Membrane Database from the Membrane Society of Australa-
sia. Moreover, databases of hypothetical structures—predicted by
theory or computations—have also appeared over time. In the
field of porous materials, for example, databases of computed ze-
olitic structures have been publishedmore than 15 years ago.[11,12]

More recently, this effort has intensified—probably in response
to the increase in capacity of computations, as well as the ease of
hosting large datasets online. Databases of various scales, con-
taining hypothetical (enumerated) metal–organic frameworks,
have been published.[13] Other groups have worked on refining
experimental databases to include additional data (such as atomic
charges), making them suitable for computational applications
and screening.[14,15] All these databases, however, are hosted in-
dependently as archive files, with heterogeneous file formats, on
individual research groups’ websites.
We note, however, that there have been some recent initiatives

in order to integrate data from different sources into larger, co-
herent databases. This is particularly the case of computational
data, whose volume increases with high-performance comput-
ing capabilities. The goals differ for the various initiatives, but
in general, they aim at providing large-scale platforms for open
science and data sharing, as well as improve discoverability and
searchability of existing data. A first example is the Materials
Project,[1] the aim of which is to “remove guesswork from mate-
rials design in a variety of applications” by computing properties
of all known materials (and many that are not yet synthesized,
too) through electronic structure analyses—a project funded as
part of the bigger Materials Genome Initiative.[2] It aggregates
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structural data from other existing databases, as well as physi-
cal and chemical properties (band structures, elastic constants,
piezoelectric tensors, electrode properties) computed as part of
the project itself. Other platforms have been built to sharing re-
sults and resources in computational materials sciences, such
as AFLOW repository,[3] the NOMAD repository,[16,17] the Open
Quantum Materials Database,[18] the NRELMatDB database (fo-
cused onmaterials for renewable energy applications).[19] We can
also cite here the ioChem-BD digital repository[20] and the more
recent Materials Cloud.[21]

3. The Current State of Affairs

As shown above, the number of existing databases is increasing
at a fast pace. Yet, the datasets themselves are often hosted using
makeshift solutions, in different places. They are typically too
large to be hosted as supporting information by the publisher of
the associated research paper, and they might be expanded and
refined over time, with the publication of updates not related
to a particular peer-reviewed paper. In the most common case,
they are hosted on the web server of the research group, on
institutional repositories offered by some universities, or on
free data hosting solutions such as Figshare,[22] GitHub,[23] etc.
This leads to the available data being dispersed between several
platforms, and in some cases, raises the question of long-term
availability of the data (e.g., when it is hosted on a group web
server or a commercial data hosting solution). Moreover, there
exists no universal way to access these data, unlike what exists
for open archives where protocols such as OAI-PMH have
been developed for interoperability and discoverability of data
sources.
This fragmentation of the landscape of materials databases is

accompanied by a large heterogeneity in the formats used: while
for crystalline material structures, the CIF (crystallographic in-
formation file) format is predominant, the data made available
as part of the CIF file is not homogeneous between different
groups. The use of symmetry operators, for example, is not al-
ways consistent, with some databases being stored with symme-
try systematically lowered to P1. In addition to this heterogeneity
in data format, there is also a general lack of availability of meta-
data, meaning that most of the databases do not contain infor-
mation about how the data was generated, gathered, curated, and
possibly updated. Yet, this metadata can be crucial in exploiting
databases, in order to identify identical or related data items, to
understand how databases evolve over time, and to allow further
investigation of specific data items.Metadata enables researchers
to answer simple queries such as: where does this structure come
from?Where was it first reported, and under what conditions was
it synthesized? How was this computational property calculated?
What are the conditions of reuse of this data?
Here, before highlighting some requirements for truly open

materials databases, we want to introduce the FAIR data prin-
ciples. The FAIR principles are a set of guidelines in order to
make data findable, accessible, interoperable, and reusable (Fig-
ure 1). They have been formalized in 2016 by a consortium of sci-
entists and organizations,[24] and were formally endorsed by the
G20 Leaders at their 2016 summit in Hangzhou ( ), China, in
order to “promote open science and facilitate appropriate access
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to publicly funded research results”.[25] Requirements for FAIR
data are:

• Findable: data are indexed in a searchable resource, has a sta-
ble unique identifier, and is described with rich metadata.

• Accessible: data are retrievable using a standardized commu-
nications protocol, that is open, free, and universally imple-
mentable.

• Interoperable: data are represented using an open, well-
defined format; data and metadata are interlinked.

• Reusable: data contains relevant metadata about its origin, a
clear and accessible data usage license, and meet the commu-
nity standards of its domain

4. Requirements For Open Databases

Based on these formal requirements, and during the discussions
at MOFSIM 2019 and other workshops, there appears to be a
need for more open and interoperable materials databases. We
outline below some of the requirements, drawing both on the
FAIR principles and shared experiences and discussions.

4.1. Open Databases

Amajority of the available data onmaterials is produced as part of
academic research, and largely funded by public monies. More-
over, for data associated with public research, there is a general

Findable

Accessible

Interoperable

Reusable

Figure 1. FAIR data principles[24]: make data findable, accessible, interop-
erable, and reusable.
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consensus that it should be accessible to all. Recent years have
seen the addition of “data availability” requirements in several
journals, and it is now a required part for any funding appli-
cation. This creates a need for open databases, where content
can be hosted regardless of its origin (contrary to institution-
wide repositories) and where it is accessible to all. Moreover, the
database should provide clear information about its users’ rights
when it comes to reusing the data, mining it, and republishing
derived products.
Because open databases do not charge their users for subscrip-

tion or access, they allow the dissemination of knowledge to cat-
egories of users that would otherwise find it difficult to obtain
access: researchers in developing countries, nongovernmental
organizations, independent researchers, journalists, even enthu-
siastic citizens. Operating such open databases of course requires
funding, and it is important to note that a number of national and
supranational initiatives have been launched in that direction (as
discussed in the introduction). This is an important requirement
for the availability of high-quality open databases, and ought to be
considered at the same time as shifting priorities for open access
to publication. For example, the recent French National Plan for
Open Science[26] has lead to specific calls for funding for open
data, and several field-specific databases have been selected for
funding through this scheme.

4.2. Interoperable Databases

It is relatively clear that, given the vastly different needs of sci-
entists working in different areas of materials science, there can
be no “one size fits all” database, that is, no single centralized
database that fulfills the needs of every different community. So,
how can a good balance be reached in developing specific topical
databases while retaining some uniformity, in order to avoid a
complete fragmentation of the field? It turns out, this problem is
one that has been worked on formany years in a related area, that
of document (or papers) archives. While there are many different
open archives on the internet, they have been developed in a way
that allows interoperability between them. Specifically, the Open
Archives Initiative (OAI) has standardized a Protocol for Meta-
data Harvesting (OAI-PMH) through which each archive exposes
its metadata, in a common format, allowing for cross-database
search and discoverability.[27]

In order to achieve this goal, several design choices are needed.
One is the use of a well-documented, standardized Application
Programming Interface (API). Through the use of that API, the
data does not have to be retrieved with a database-specific client
or web portal,[28] but can be written in any programming lan-
guage without inside knowledge of how the database operates
internally. This means, in turn, that code that is developed for
one specific database will work seamlessly with all others.
Another is the inclusion of data in standard, publicly doc-

umented file formats. Given that most current databases are
currently structural databases, a part of this problem has already
been addressed in the several past decades: crystal structures
are uniformly reported in CIF format (although the details
available are not always consistent), macromolecular structures
are consistently in PDB format, etc. However, there is currently
no unified format for storing the properties of these materials.

This is made difficult by the fact that properties are rather
diverse in their mathematical nature: some are dimensionless
but others have units; some are integers or half-integers, others
vary continuously; some are scalars, others are matrices or
higher-order tensors. Moreover, they sometimes need to be
accompanied by additional information: expected uncertainty,
reference orientation, etc.

4.3. With Rich Metadata and Interlinked Datasets

Metadata can be defined, in its simplest form, as “data that pro-
vides information about other data.” Like in any database, in
a materials database, metadata is crucial in assessing the data
present, answering questions such as: how was this data gath-
ered, by whom, when? In which conditions was a given property
measured? For computational information, what was the theo-
retical method used, what is the level of description of the sys-
tem? This is particularly important in databases of computational
properties, where there can be a clear influence—and sometimes
even a systematic bias—of the computational method chosen on
the physical and chemical data calculated. If metadata is present
in the databases, it opens the door to large-scale systematic explo-
rations of various theoreticalmethods, and their comparisonwith
experimental results obtained with different techniques, too.
Moreover, metadata can also provide much-needed links be-

tween several different interoperable databases. If a unique iden-
tifier is given for each dataset, and databases are interlinked
through their metadata, it provides a much simpler exploration
for users. It makes it easy to determine, for example, if two prop-
erties from two datasets are independent or come from the same
original calculation. It also allows greater discoverability, making
it possible to find other properties in other databases, related to
any given entry.

4.4. Curation That Preserves the Scientific Record

The requirements listed above do not stop a fixed point of time,
but instead must be considered throughout the databases’ time-
line. For example, metadata can record the time of measurement
of a given data, but also its time of inclusion in the database, and
its further history. Indeed, with any database of significant size,
it is expected that curation of the data is an important topic, and
the dataset will be modified to remove errors, updated to reflect
new measurements, and sometimes data will be removed for a
variety of legitimate reasons. However, for the sake of research re-
producibility and conserving the scientific record, it is important
that such modifications be recorded in the metadata—just like
corrections and retractions are publicly announced and archived
for scientific articles. To my knowledge, this is not currently the
case in existing databases, although the Materials Project is pub-
lishing “release logs”[29] which are kept on a separate page, but
not recorded in the database as metadata.

4.5. Long-Term Availability

Finally, this discussion cannot be concluded without addressing
the issue of long-term availability of the deposited data, meaning
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that it is necessary, over time, to build institutional support with
long-term commitments. This also requires planning for what
happens if and when the hosting institutions decide to “pull the
plug” on the project. There, having an open database with an API
for direct access to bulk data is a benefit, because it means other
interested parties can duplicate the database and take over host-
ing. Other lessons can be learned from open archives, and ini-
tiatives in that field such as CLOCKSS, a long-term preservation
project for articles and bookswith highly redundantmirroring.[30]

4.6. Validation, Interlinking with Experimental Data

The computational databases discussed above are almost ex-
clusively composed of calculated materials properties, based on
either experimental or hypothetical structures. These proper-
ties are sometimes benchmarked against experimental results
in publications—especially for the initial validation of the
methodology—but it is rarely done in a systematic manner, and
integrated into the database itself. Now that large-scale com-
putational databases are available, and are starting to appear at
different levels of theory, there is a need for systematic validation
of large subsets against experimental data, and inclusion (or
interlinking) of this experimental data in a systematic manner
with the computational databases.

5. Application to Metal–Organic Frameworks

The computational databases listed above have mainly focused
on properties of materials with relatively simple chemical com-
position and structure, and in particular inorganic crystalline
compounds—they form the vast majority of the datasets avail-
able today. However, given the rapidly growing number of metal–
organic frameworks (MOFs) reported and present in licensed
databases like the Cambridge Structural Database (CSD), there
have been initiatives in this area as well. However, there have
been until recently no real computational databases with re-
ported materials properties, but research instead focused mostly
on structural databases—whether from experimental data or hy-
pothetical frameworks. The former exploited the CSD database to
apply filters and high-throughput screening of, for example, ad-
sorption properties: this was, for example, the case of Goldsmith
et al. for a study on hydrogen storage.[31] The later used combina-
torial algorithms to identify novel hypothetical MOF, such as the
seminal work of Wilmer et al. to obtain a database of 137 953 hy-
pothetical MOF structures from 102 different building blocks.[13]

Beyond this initial work, more recent studies have shifted to
the production of so-called “computationally ready” structural
databases: these are curated databases of structures adapted from
experimental crystallographic files, so that they are suitable for
running calculations in a routine (and high-throughput compat-
ible) way. This involves the automated removal of included sol-
vent molecules and disorder, addition of missing hydrogens, and
general cleaning up of the structures. The first such published
database was the CoRE MOF database,[14] containing more than
6000 3DMOF structures. Another example is the recent CSD fil-
ter by Moghadam et al.,[32] built on top of the commercial CSD

database—and which thus stays up-to-date when new structures
are added.
Finally, I note that some MOF structural databases have been

augmented, over time, with additional computational data: for ex-
ample, Nazarian et al. added to a subset of the CoreMOFdatabase
atomic point charges derived from periodic DFT electronic struc-
ture calculations.[15,33] There is, however, to this date no existing
database of MOFs with macroscopic materials properties (vibra-
tion modes, elastic properties, etc.)—this is probably due to the
much larger computational effort required for such calculations,
compared to “simpler” inorganic compounds. We may thus ex-
pect that situation to change in the future.
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