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ABSTRACT: Topology is key to the determination of many
physical and chemical properties of materials, such as electrical,
optical, and magnetic properties, as well as thermal and mechanical
behavior. However, despite the growing number of databases of
crystalline materials available, there has been very little systematic
effort to date to analyze their topology. In this work, we have
leveraged recent algorithmic advances in the analysis of chemical
bonding and topology determination in order to perform high-
throughput analysis of topology of materials on a large-scale
database of existing and hypothetical materials, the Materials
Project data set of more than 170,000 structures. Beyond the
statistical analysis of the most frequent topologies and coordination
environments, the publication of these topological data will allow
researchers to search for materials by topology and chemical environment, paving the way to enhanced performance in materials
screening for applications. We demonstrated two examples of the usefulness of topological considerations in such computational
screening.

■ INTRODUCTION
The physical and chemical properties of materials at the
macroscopic level naturally arise from the nature and
microscopic arrangement of their atoms through the laws of
statistical physics and the nature of the interactions between
the atoms. In this, some geometrical quantities related to the
local organization of matter are often considered as key by
scientists because they play an important role in structure/
property relationships: distances between nearest neighbors,
bond angles, dihedral angles, etc. However, these very local
descriptors of the environment of each atom cannot fully
account for the macroscopic properties of the material. Longer-
range information, related to the “packing” or “ordering” of
atoms into space, is also important.1−3 Features such as
symmetry and topology play a critical role in determining the
physical properties of materials, shaping their behavior across a
range of fields from condensed matter physics to nano-
technology.4,5 Topology is key to the determination of many
physical and chemical properties, such as electrical, optical, and
magnetic properties, as well as thermal and mechanical
behavior, among others�in ways that go beyond simple
chemical composition or crystallographic structure.6,7

This is particularly true for crystalline materials and
framework materials built from building blocks (which can
be individual atoms, molecular fragments, or larger structural
elements) into ordered, periodic three-dimensional structures.
A lot of effort has been extended to find topological

characteristics that maximize the occurrence of specific
desirable properties or suppress unwanted behavior. This
concept is also at the core of the reticular chemistry approach,8

in which well-defined molecular building blocks are assembled
by strong bonds into crystalline extended frameworks, in a
LEGO-like manner. There, the properties of the crystal derive
from the properties of the individual building blocks as well as
the topology of the three-dimensional net.
Recent years have seen the development and widespread use

of an important number of databases of materials, whether
experimental or hypothetical. Data-based approaches to the
discovery of novel materials�or the identification of known
materials with optimal performance for a specific application�
are becoming a common research theme.9,10 However, despite
the many databases of crystalline or framework materials
available, there has been very little systematic effort to date to
analyze their topology. We think that this blind spot in
previous research efforts is due to the combination of two
factors. First, the determination of a material’s topology
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requires the knowledge of chemical bonds in the system. While
many heuristics exist for specific subclasses of systems, the
determination of bonds is not a trivial problem, especially at
large scale. Second, applying topology determination algo-
rithms to a large number of structures (tens of thousands or
more) requires the use of very fast, optimized software, which
was not readily available until recently.11

In this article, we detail our methodological work to
determine the topology of materials from databases at a large
scale and analyze the resulting data. We demonstrate the
usefulness of this approach by applying to more than 170,000
inorganic crystalline structures from the Materials Project
database and publishing this new data set of chemical
environment and topology information. This is the first
systematic, high-throughput determination of material top-
ology in a database of this size. We highlight how this can be
statistically analyzed and propose two concrete examples of
how topological considerations can be used in high-throughput
computational screening for the identification of materials with
desirable properties.

■ METHODS
We provide below a summary of the methodology followed in the
present work. The associated code and data are available online at
https://github.com/fxcoudert/topology_databases. A schematic rep-

resentation of the workflow for topology determination is given in
Figure 1.
Materials Project Database. We studied all inorganic structures

available at the date of the study from the Materials Project
database,12,13 a part of the Materials Genome Initiative whose goal is
to apply high-throughput computing to map the properties of “all
known inorganic materials”. The Materials Project API was queried
using the pymatgen package (version 2025.2.18).14

The s t ud y wa s p e r f o rmed on d a t a b a s e v e r s i o n
2025.02.12.post, which was the latest version at the time of
writing.1 The query returned 170,470 crystalline inorganic structures,
corresponding to known materials and many hypothetical ones, all
optimized through Density Functional Theory (DFT) calculations of
their atomic positions and cell parameters. The structures from the
Materials Project are generally under the CC BY license (Creative
Commons Attribution 4.0 International License), except the subset of
structures from the GNoME database,15 which are distributed under
the terms of CC BY NC (Creative Commons Attribution Non-
commercial 4.0 International License): this accounted for 15,483
structures.
Determination of Bonding. For all the structures retrieved from

the Materials Project database, we performed calculations of bonding
patterns through use of the CrystalNN method.16 CrystalNN is a
novel algorithm for determining near neighbors in crystals, introduced
in 2021 and benchmarked against well-established algorithms on a set
of reference crystal structures spanning elements, binaries, and ternary
compounds. It has a stronger fundamental background than most of
the previous algorithms, which typically rely on ad hoc heuristics.
CrystalNN uses Voronoi decomposition17 and solid angle weights to

Figure 1. Schematic representation of the workflow for topology determination, illustrated on the structure of the pure-silica mordenite zeolite,
corresponding to Materials Project mp-600063. The topological genome for that net is a series of 241 integer values, and its three-letter code
from the IZA-SC database is MOR.
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determine the probability of various coordination environments and
select the one with highest probability. It is the same algorithm that is
widely used throughout the Materials Project, including to display
bonds on the web portal. CrystalNN is also the algorithm that is used
for bond determination in the Materials Project’s robocrystallogra-
pher, an open-source toolkit for analyzing crystal structures:18 it
generates textual descriptions including the local coordination and
polyhedral type, polyhedral connectivity, octahedral tilt angles, and
dimensionality.
We note here that while CrystalNN can be reparameterized for

specific classes of systems, we used it here with its default parameters,
tuned and recommended for inorganic materials. In order to improve
the accuracy of the method, we made an exception for one specific
class of system: intermetallic structures, defined as compounds that
contain only metallic atoms. For those following the recommenda-
tions laid out in Pan et al.16 (see section 8 of their Supporting
Information), we used CrystalNN without electronegativity weighting
(setting x_diff_weight = 0). Intermetallic structures account for
16.1% of the Materials Project database.
When applied to the 170,470 crystalline structures, CrystalNN

successfully determined coordination environments in 170,455
structures (a failure rate of 0.0088%). It failed on 15 structures,
where it could not find Voronoi neighbors for at least one atomic site:
upon checking these structures, we therefore discarded them. For the
remaining 170,455 structures, statistics about the coordination
environments of each material were stored and later analyzed (see
the Results section), and for each structure a CIF file was written
including the bonding pattern�using the geom_bond_atom_-
site_label, geom_bond_distance and geom_bond_-
site_symmetry keywords from the CifCore dictionary.
There are several alternative methods to determine bonding

between atoms. Some of the algorithms use heuristics refined over
time, like those in Jmol19 and OpenBabel,20 while others are based on
more mathematical foundations, such as the methods of Brunner,21

Hoppe,22 O’Keefe et al.,23 and Isayev et al.24 For a full review and
comparison of these, we refer the reader to ref 16. Of course, the
choice of bonding method impacts the choice of topology
determination, but it is not entirely clear what is the “best” method
at the moment�and it might depend on the category of systems
studied. However, CrystalNN was found to perform well on a
benchmark across multiple families of crystalline systems.16

One method that was developed at the same time as CrystalNN
and is also implemented in pymatgen is the ChemEnv25 algorithm,
which has been field-tested by an analysis of the coordination
environments in 8000 oxides26 of the Inorganic Crystal Structure
Database (ICSD).27 ChemEnv features different possible strategies for
the determination of the bonding and coordination environments of
atoms in a crystal. However, even with the “simplest” strategy
(SimplestChemenvStrategy), we found that the computa-
tional cost of ChemEnv analysis is larger than other methods, making
it unsuitable to apply at the scale of hundreds of thousands of
structures. To give an idea, the application of CrystalNN to the
database took under four hours, with a timing of 81 ms per structure
on average; ChemEnv analysis (performed on a random subset of
5000 structures) was 25 times slower, with 2.0 s per structure.
Determination of Topology. We then used the Crystal-

Nets.jl software, previously developed in our group,11 to retrieve
the topology of all the structures. While CrystalNets internally has
heuristics that can detect bonds when they are not provided, in this
case, we strictly used the bonding information as provided by
CrystalNN through CIF files. Given that we deal with inorganic
structures, we used the EachVertex clustering type, meaning that
we perform no clustering to identify secondary building units: each
atom is its own vertex, and vertices with degree 2 or lower are
iteratively collapsed into edges until all vertices have degree 3 or
more. We also turn off the “split lone O vertex” option�a heuristic
that is tuned for metal−organic frameworks but is unsuitable for
oxygen-containing inorganic structures such as dense oxides.
For each crystal structure, CrystalNets then identified zero, one, or

more periodic nets. If a structure does not have any net, it is called

aperiodic: it means that it contains zero-dimensional clusters of atoms,
unconnected to each other. On the other hand, a crystal structure may
have multiple interpenetrating nets, a common case in porous
framework materials�but rarer in dense inorganic crystals.
Then, each net in the structure is identified by its dimensionality

(one, two or three-dimensional) and a unique identifier, its
topological genome: it is a finite series of integers, such as 3 1 2 0
0 0 1 2 0 0 1 1 2 0 1 0 1 2 1 0 0 for the diamondoid (dia) net.
This genome is provably unique for each net, depends only on the net
itself and not its representation, and can be computed in polynomial
time of the size of the net. In previous versions of Crystal-
Nets.jl, some unstable nets28 could not be assigned a unique
genome: this happened when at least two vertices, in their equilibrium
placement, have the same position�we refer the interested reader to
ref 11. for more details on this. In the latest version, we introduced a
new algorithm to uniquely identify unstable nets. However, this
algorithm is factorial in complexity, while our algorithm for the
general case is polynomial. Therefore, the algorithm is too slow to be
used for some very large unstable nets: this accounted for 78 of
170,455 structures.
Working with topological genomes is suitable for computers but

not for human chemists. Therefore, in a last task, the topological
genome of each net is compared to the existing databases of named
topologies: the Reticular Chemistry Structure Resource (RCSR),29

the EPINET project,30,31 and the zeolitic nets from the Structure
Commission of the International Zeolite Association (IZA-SC).32

The nets that have been attributed a name (often a three-letter code)
by one of these entities can then be referred in a more human-
readable fashion: dia for diamondoid net, SOD for sodalite zeolitic
framework, etc. For nets that are not in any of these databases, we call
them unnamed: they are uniquely identified by their genome but have
not been attributed a name.
DFT Calculations. The single crystal elastic constants of selected

structures from the Materials Project database were calculated in the
density functional theory (DFT) approach with periodic unit cell and
atomic basis sets, as implemented in the CRYSTAL17 code,33 using
the PBEsol exhange−correlation function34 and POB double-ζ +
polarization basis sets.35 After the unit cell of the material is fully
relaxed, optimizing both atomic positions and unit cell parameters, the
elastic constants of these relaxed structures are then calculated by
applying adimensional strains of ±1%.36,37 The elastic stiffness
matrices obtained were checked against Born’s stability condition,
namely that the symmetric stiffness tensor is positive-definite. The
elastic tensors were then analyzed with the online ELATE
application.38

Publication of the Resulting Data. All data produced in this
work is published on our group repository at https://github.com/
fxcoudert/topology_databases under the CC0 license, i.e., in the
public domain. Additionally, all data was uploaded to the MPContribs
framework under the topology project and available at https://
next-gen.materialsproject.org/contribs/projects/topology. MPCon-
tribs is an extension of the Materials Project website that allows
user-contributed data to be shown and analyzed alongside the core
MP database.39 This allows researchers to search for materials with
specific topology or dimensionality, using the user-friendly Materials
Project interface and its powerful in-browser visualization, as well as
to link directly to other properties already present in the Materials
Project.

■ RESULTS AND DISCUSSION
Diversity of the Topologies. Figure 2 presents the

distribution of the dimensionality of nets identified in the
Materials Project database�information that is available
through our analysis but also stored in the MP itself and
accessible through its /materials/robocrys API end
point. We can see that 3.6% of the structures are aperiodic, i.e.,
correspond to clusters of atoms unconnected through space.
4.2% of the MP structures feature one-dimensional nets: these
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are typically linear chains of atoms, a net we call in this work
the rod topology. Out of the 7631 one-dimensional nets
identified, 6221 are rod nets; the remaining 1420 correspond
to more complex one-dimensional nets (290 different types of
1D nets are represented). 2D nets represent 9.8% of the MP
structures and will be discussed in more detail in their own
section below. We focus in the rest of this section on three-
dimensional nets, which represent the large majority of the MP
database with 82.4% of structures.
The first thing we want to highlight from this analysis is the

very large diversity of topologies encountered through the
Materials Project database. In fact, the 149,204 materials with
3D nets are distributed into 40,246 different topologies, an
average of ≈3.7 materials per topology. But the distribution is
very unbalanced, with a fat-tailed nature: the most common
topology (pcu) is encountered 8702 times, and the 20 most
common topologies together account for 41,131 materials
(27.6% of the database). On the other hand, the vast majority
(30,101) of net topologies occur only once in the database.
This huge diversity of the topologies encountered can be
surprising or counterintuitive to solid-state chemists, who like
to classify materials in well-known topologies (for example, for
common minerals). However, the need for increasing
topological diversity in databases of hypothetical materials
has been highlighted before, for example, by Anderson et al.40

in the case of metal−organic frameworks (MOFs). We believe
that our present analysis reinforces this point: computational
databases generated by enumeration of a limited number of
identified topologies are inherently limited compared to the
wide diversity observed here.
Another point that we can draw from this analysis is that the

named nets, present in the RCSR, EPINET, and IZA-SC
topology databases, only represent a small fraction of the many
topologies identified. Indeed, of the 40,246 different topologies
identified in the database, only 713 have common names
(1.7%). The others are labeled unnamed-n, with integer values
of n in decreasing order of frequency of their occurrence.
Most Frequent 3D Topologies. We present in Figure 3

the histogram of the occurrence of the most common 3D

topologies in the Materials Project database, while Table 1
summarizes key properties of the 16 most common named 3D

net topologies. It is not surprising that the most common
topologies are very familiar to solid-state chemists, including
various cubic-based structures (pcu, bcu, and fcu), hexagonal
closest packing (hcp), and topologies from very common
families of materials, such as perovskites, spinels, rutile, and
diamond. Also unsurprisingly, the most common coordination
environments include vertices with 4, 6, 8, and 12 neighbors,
and less often, coordination numbers of 3, 10, and 16.

Figure 2. Distribution of dimensionality of nets identified in
structures from the Materials Project database.

Figure 3. Most common three-dimensional nets in the Materials
Project database (logarithmic y scale). Note that the first unnamed
3D net is “unnamed-2”, because the most common unnamed net is a
2D net.

Table 1. Characteristics of the 16 Most Common Named
3D Net Topologies Encountered in the Materials Project
Database

topology common name
number of
occurrences

type of
vertices coordination

pcu primitive cubic
lattice

8701 1 6

bcu body-centered
cubic

6044 1 8

xbo perovskite 5882 3 6, 6 and 12
hcp hexagonal closest

packing
3443 1 12

fcu face-centered cubic 2699 1 12
spl spinel 2528 3 4, 4 and 6
rtl rutile net 1538 2 3 and 6
dia diamond 1143 1 4
mgc-x MgCu2, C15 Laves

phase41
1074 2 16 and 12

cor corundum 940 2 4 and 6
lon lonsdaleite 682 1 4
flu fluorite 678 2 4 and 8
mgz-x MgZn2, C14 Laves

phase41
556 3 16 and 12

sqc1279 512 3 10 and 8
kpc QOB net, K2PtCl6 461 3 12, 6 and 5
apo α-PbO2 369 2 3 and 6
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Since we are not aware of any previous systematic study on
topology in inorganic materials databases, we have no direct
point of comparison for this list of topologies. What can,
however, contrast the most frequent inorganic topologies with
that of other materials that have been studied, namely, the
supramolecular MOF frameworks. There, three recent studies
have reported statistics of topologies: on the CoRE MOF
database in ref 11, in the DigiMOF data set in ref 42, and in
the ARC-MOF database in ref 43. All used the CrystalNets.jl11

software, but on different sets of structures. Focusing on the
most common 3D topologies, summarized in Table 2 in

MOFs, we see that beyond relatively simple topologies like
pcu, bcu, rtl, and dia, the top topologies of inorganics and
MOFs differ for the most part. In fact, it appears clearly that
MOFs, due to their supramolecular nature and large secondary
building units, mostly feature low coordination numbers (3, 4,
and 6 dominate), while dense inorganic materials often have
topologies with higher connectivity.
Focus on 2D Materials. As we have seen in Figure 2,

materials with two-dimensional topologies represent 9.8% of
the Materials Project database, corresponding to 17,577
crystalline structures. Also called “two-dimensional layered
materials” (or simply “layered materials”), these materials
consist of “sheets” without chemical bonds between them.
They are interesting for two main reasons: (i) their layered
nature gives rise to specific physical properties, marked by a
very strong anisotropy; (ii) they can be considered precursors
of truly two-dimensional materials (similarly to the relationship
of graphite and graphene).
We plot in Figure 4 the distribution of the most common 2D

topologies identified in the MP database. We can see four
types of common 2D nets that are indeed very well-known:

• kgd is the Kagome ́ dual net, also called “rhombille
tiling”. It has one 6-coordinated vertex and one 3-
coordinated vertex.

• sql is the square lattice, with only one type of vertex,
which is 4-coordinated.

• hcb is the honeycomb net with one 3-coordinated
vertex.

• hxl is the 6-coordinated hexagonal lattice, sometimes
also called “triangular lattice”.

It is also very interesting to note that the most common 2D
net topology is unnamed; i.e., it is not featured in the RCSR
database. It is, however, relatively simple and displayed in

Figure 5 on the example of mp-7007, a layered NbSe2 structure
with this topology, which is known experimentally (it

corresponds to ICSD entry 71,339).44 This niobium(IV)
selenide topology features 6-coordinated Nb and 3-coordi-
nated Se atoms, with a hexagonal arrangement of niobium. It is
interesting to note that this layered topology is very frequent in
the Materials Project database, accounting for 4674 structures
The next net topologies in the list have a much lower

occurrence, with less than 100 representatives in the database:
the 3-coordinated fes net, and two sql-derived lattices mixing
3-fold and 4-fold coordination, bex and bey. They are
illustrated in Figure 6. We note in passing that topologies
with 5-fold coordination are very rare among 2D materials.
Statistics of Coordination Environments. As part of the

data gathered through the use of the CrystalNN bond-

Table 2. Characteristics of the 10 Most Common 3D Net
Topologies Encountered in Three Different Metal-organic
Framework (MOF) Databasesa

CoRE MOF DigiMOF ARC-MOF

pcu (6) pcu (6) pcu (6)
dia (4) dia (4) fsc (4, 6)
ths (3) pts (4) nbo (4)
srs (3) rtl (3, 6) pts (4)
pts (4) cds (4) sra (4)
nbo (4) srs (3) rna (3, 6)
bpq (4, 6) sra (4) dia (4)
rtl (3, 6) bcu (8) tfz-d (3, 8)
lvt (4) ths (3) cds (4)
bcu (8) tfz-d (3, 8) lvt (4)

aTopology name, and coordination numbers between parentheses.

Figure 4. Most common two-dimensional nets in the Materials
Project database (logarithmic y scale).

Figure 5. Illustration of the structure of material mp-7007, a layered
NbSe2 structure. Upper panel: view from the side; lower panel: view
from the top.
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detection algorithm, we store in our data set the coordination
environment of all the materials. Meaning, for each material,
we obtain a list of bonds present and the coordination number
of each atom. This information is stored in JSON format like
this:

In this case, we see that for material mp-39105, there are two
types of bonds: Mg−N and Ta−N, and all atoms (Mg, Ta, and
N) are systematically 6-coordinated. We also see that other
information about the crystal system and space group, the
chemical formula, and the topology is stored: here, the material
has only one net, which has a three-dimensional ste topology.
This information on bonding and chemical environment can

be used for searching through the Materials Project database in
the future, answering questions such as “what materials contain
Au−S or Ag−S bonds?”�there are 81 and 684, respectively.
Or “what is the most common coordination number of Cu in
compounds where it is bonded to F?”�it is 6, but 4- and 5-
fold coordination also occur in significant numbers. Or “what
are the most common coordination numbers for Ce?”�8 is
the most common, followed by 6 and 12. Another possible use
for this information is to draw statistics of coordination

numbers for specific elements across the entire MP database,
as shown in Figure 7.
Searching for Materials with Specific Topology or

Coordination Environment. One of the goals of topological
classification of materials in the MP database is the search or
identification of materials with specific topologies. Computa-
tional high-throughput screening studies regularly use multi-
objective optimization, i.e., the identification of top-performing
materials for several physical or chemical properties, based on
constraints on their chemistry (“the material should not
contain Pb” or “should contain at least one S atom”), their
geometry (“materials with two metal atoms with distance
shorter than 2.5 Å”), or other properties (“presence of a cavity
of diameter at least 4 Å”).45 Before our present work, it was not
possible to perform searches in the Materials Project database
by topology. It is now possible to add criteria such as “structure
with a five-coordinated S atom” or “structure with a diamond
(dia) or diamond-derived topology (dia−*)”.
Because some physical properties are intrinsically tied to

specific topologies, there is a clear interest in being able to filter
and search material databases by topology. One very recent
example is the search for classical spin liquids by looking at
high symmetry nets and the impact of nearest neighbor
interactions in these nets.46 This lead the authors to identify, in
addition to the well-known crs (pyrochlore) net, two other
nets of interest that had not previously been investigated, lcx
and thp.
We want to illustrate here briefly this approach on the MP

database with two specific examples, tied to past work in our
group. In the first case, we want to use topological search to
identify materials with mechanical pliancy and negative linear
compressibility, similar to the family of metal−organic
frameworks MIL-53, which have a distinctive “wine-rack
type” framework.47 This framework has a net topology, rna
or bpq, depending on the type of clustering used. Looking up
materials with one of these two topologies in the MP database,
we can identify 25 structures, including 16 experimental
materials and 9 hypothetical structures. One family emerges in
particular, of the type ABF6−n(H2O)1+n (n = 0 or 1), including
for example materials like NaPF6H2O (mp-767419) and
MgAlF5(H2O)2 (mp-24142). The structures are composed of
BF6 octahedra that share corners with AO2F4 octahedra, most
often in the Imma space group (although some exceptions are
in related Imm2 and Pnna space groups).
To confirm the potential of these structures for highly

anisotropic mechanical properties, we performed DFT
calculations on three matching structures, mp-23768 (ZnAl-
H4O2F5), mp-24142 (MgAlH4O2F5), and mp-725680
(NaPOF6), in order to calculate the second-order elastic
tensors of these materials and, therefore, their elastic
mechanical properties. We find that all three materials exhibit
anistropic mechanical properties, especially for their linear
compressibility, with a factor of 4 between their stiffest and
their softest directions. Of the three, NaPOF6 is the only one
that exhibits anomalous mechanical properties, with a very
anistropic shear modulus and the existence of directions of
negative Poisson’s ratio (a phenomenon also called auxeticity),
as displayed in Figure 8. This is clearly linked to its “wine-rack
type” structure, showing how screening of materials by
topology can be integrated into multiscale high-throughput
schemes for the identification of materials with targeted
properties.

Figure 6. Illustration of some of the most common 2D nets in the
Materials Project database.
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As a second example of identification of materials with
specific topology, we focus here on the intriguing behavior of
zirconium tungstate, ZrW2O8, which exhibits a number of
counterintuitive mechanical responses to external stimuli: it
has negative thermal expansion, very easy amorphization under
hydrostatic pressure, and features negative hydration ex-
pansion, i.e., it contracts upon chemisorption of water
molecules.49 These unusual characteristics have been recently
linked to its microscopic structure and in particular, the
topology of this remarkable material (see Figure 9).48 Looking
then for structures with fsn topology in the Materials Project
database, we identify 201 such materials, with 94 experimental
structures and 107 hypothetical ones�including our original
compound ZrW2O8 (a.k.a. mp-18778). Focusing on the
experimental materials, 54 structures have the Pa3̅ space
group, 33 have the P213 space group, 5 have Pca21 symmetry,
and two structures have Pna21 and P1 symmetry, respectively.
If we further restrict our search for oxides (i.e., structures
containing oxygen), we can identify four categories of
candidate materials:

• only two tungstates: ZrW2O8 and HfW2O8 (expected
due to the chemical similarity of zirconium and
hafnium), in P213 space group;

• two vanadates: ZrV2O7 and HfV2O7 (Pa3̅);

• several phosphates: MP2O7 for M = Si, W, Th, Mo, Ce,
Ti, Sn, Zr (in the Pa3̅ space group), as well as
InSb(P2O7)2 (Pna21) and UP2O7 (P1);

• some peroxides in the Pa3̅ space group: NaO2, ZnO2,
MgO2, and CdO2.

Further investigations would require in-depth screening of
the properties of these materials, e.g., by DFT calculations and
geometric determination of their void spaces, in order to
identify the best candidates for thermal and mechanical
properties similar to those of the parent compound ZrW2O8.
We showed here how the availability of a materials database
annotated with topological information can prove valuable in
the exploration of chemical space of materials.

■ CONCLUSIONS AND PERSPECTIVES
From the viewpoint of a solid-state chemist, topology is a key
feature of crystalline materials, as it influences many of their
physical and chemical properties, including electrical, optical,
and magnetic properties, as well as thermal and mechanical
behavior. Crystalline topology has long been used to
rationalize different categories of behavior, and researchers
often look for materials with specific topologies in order to
achieve the desired properties. So far, this has been a mostly
manual process: despite the growing number (and size) of
available databases of crystalline materials, these structures
have not been annotated with topology information. Here, we
have shown that it is now possible to achieve this goal at very
large scale, by combining bonding detection algorithms (if
bond information is not already present in the structures) and
recent algorithmic advances in topology identification through
the CrystalNets.jl library.
To demonstrate the capability of our workflow, we have

applied this new workflow to the large-scale database of
inorganic materials from the Materials Project, consisting of
more than 170,000 structures�the first systematic determi-
nation of topology in a materials database of this size. This
allowed us to report a statistical analysis of the most frequent
topologies and coordination environments and publish this
information online to allow researchers to search for materials
by topology and chemical environment. This will pave the way
to more efficient search in materials screening for applications,
by allowing us to include more chemical insight and restrict the
search space to specific topology, bonding patterns, and
coordination environments. While we demonstrated two
examples of the usefulness of topological considerations in
such computational screening, we believe that this will be
useful for many applications. It is one more tool in the toolbox
of materials researchers; beyond its use in high-throughput
screening, it will also be usable to experimentalists through the
user-friendly MPContribs framework on the Materials Project
website.
In the future, we intend to extend this approach to more

material databases. Net detection and topology identification

Figure 7. Distribution of coordination numbers for atoms N, O, F, P, S, and Se throughout all materials of the Materials Project database.
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are easily automated, but the main limiting step at this moment
in our methodology is detection of bonding. For inorganic
structures, the CrystalNN algorithm has good accuracy,16 but
it is not well adapted and has important limitations for organic

or organic-containing compounds or intermetallic structures.
We have developed heuristics for subclasses of crystals, such as
metal−organic frameworks, allowing us to screen MOF
databases, such as CoRE MOF.11 However, no truly general
solution for accurate bond detection is available to the best of
our knowledge. Further development in this direction is
needed, and the database could also, in the future, include
bonding information�as does the recently released MO-
SAEC-DB.50 This will allow, in turn, to search for MOFs with
specific properties linked to their topology, such as defect-
tolerant MOFs with good mechanical stability51 or acting as
mechanical meta-materials.52

Another promising avenue of research is the use of more
complex decomposition strategies to determine the topology in
specific families of materials. For example, in ionic compounds,
such as oxides, sulfides, or halides, one could choose a
representation where only cations are included as vertices and
bridging anions are transformed into edges.

Figure 8. Top: structure of NaPOF6 (mp-725680), a material with bpq topology. Bottom: 2D representations of the Poisson’s ratio of this material,
in the (xy), (xz), and (yz) planes. Blue: maximum value in each direction; green: minimum value in a given direction when it is positive; red:
minimum value when it is negative, indicating a direction of auxeticity.

Figure 9. Left: crystal structure of ZrW2O8 (Zr in green, W in blue,
and O in red), highlighting the four cavities of each unit cell as a white
surface. Reproduced with permission from ref 48. Copyright 2018
American Physical Society. Right: tiling of the fsn topology of the
material.
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theórie des formes quadratiques. Premier meḿoire. Sur quelques
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