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ABSTRACT: We present here the computational chemistry L at

. ~arlo
methods our group uses to investigate the physical and chemical Boltz !’Ce N\o/n‘-e,ca il

properties of nanoporous materials and adsorbed fluids. We afnn
highlight the multiple time and length scales at which these _ BN
properties can be examined and discuss the computational tools DFT \ Ab inje;
relevant to each scale. Furthermore, we include the key points to tio
consider—upsides, downsides, and possible pitfalls—for these
methods.

B INTRODUCTION alous” physical properties, such as stimuli-responsive materials

(sometimes also called multifunctional or “smart” materials).®
These frameworks exhibit large-scale changes in their structure
and physicochemical properties in response to small stimuli,
such as temperature change, mechanical constraint, guest
adsorption, and exposure to light or magnetic fields.

Our research seeks to capture the structure, dynamics, and
thermodynamics of nanoporous systems using an atomistic

The Coudert research group uses molecular simulation, at
various scales, to study a wide range of porous materials and
molecular fluids near interfaces or under confinement. Outlined
herein is a review of the computational chemistry toolbox we
routinely use. Nonetheless we will first say here a few words
about the systems of interest to our research: nanoporous
materials and the adsorption of molecular fluids within their

pore space. level description. Because the systems vary widely in length

Nanoporous materials exhibit high internal surface area, scales, and the processes we want to observe can significantly
resulting in a wide range of applications, examples of which differ in their time scales, we use different “levels of theory” or
include large-scale processes in key sectors of the chemical theories with different assumptions. This may, for example,
industryl such as gas separatjon and Capture,1 storagelz hquld include exp11c1t1y treatin§ the electrons of each atom ("quantum
separation, heterogeneous catalysis,” drug delivery,* and more.” chemistry” approaches)” or treating atoms or groups of atoms
Specifically, nanoporous materials display a very rich range of as a single unit (“classical” approaches).10 In all cases, however,
chemical composition (inorganic, organic, metal—organic) and the goal of computational chemistry is the same: to model the
geometrical properties (macroporous, mesoporous, micro- macroscopic behavior of complex heterogeneous systems,
porous). This offers a diverse scope of physical and chemical constructed from individual entities and their interactions,
properties. Among nanoporous materials, our group focuses on under certain external (experimental) conditions. This is
two main families of materials, namely zeolites and metal— achieved by relying on statistical thermodynamics as our
organic frameworks (MOFs).%” Inorganic zeolites represent the fundamental tool for bridging the interactions at the atomistic
current generation of porous materials widely used in industrial scale and the macroscopic properties of a condensed matter
processes, due to their large-scale availability, reasonable cost, system. Though numerical methods of statistical thermody-
and high thermal, mechanical, and chemical stability. The very namics can be applied to nonequilibrium processes,'" we focus

topical metal—organic frameworks (MOFs) are a more recent
class of materials. MOFs are widely considered contenders for
specific applications, due to their extraordinarily high porosity
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here on computational methods to study systems in thermal,
mechanical, or chemical equilibrium.

For a system in thermodynamic equilibrium in a given
experimental condition, its state is determined by a number of
thermodynamic variables forming a thermodynamic ensemble.
An isochoric—isothermal process, for example, takes place in
the commonly used (N, V, T) canonical ensemble, in which the
quantity of matter (N), system volume (V), and absolute
temperature (T) are fixed. In a given ensemble, the
thermodynamics of the system and its macroscopic properties
are then entirely determined by the statistical distribution of all
possible microscopic states (or microstates) of the system. This
is formalized through the ensemble’s partition function, whose
simplest expression is, for a system with quantized states in the
canonical ensemble and with classical Maxwell-Boltzmann
statistics:

Z(N,V,T)= ), exp[l:—?]

1

(1)

where i is the microstate index of the system, k is Boltzmann’s
constant, and E; is the total energy of a given microstate.

In practice, all molecular simulation methods have the same
goal: to evaluate the macroscopic properties of the system by
averaging microscopic properties over a collection of micro-
states i (this is the ) ; part of eq 1), weighted by the respective
probability of occurrence (Boltzmann probability), which
depends on their energy (the individual E/s involved in the
summation). The differences between the various computa-
tional approaches available are due to different methods of
evaluating the energy of states and of sampling the microstates
of the system.

Methods of evaluating energy in these systems can use
complex quantum mechanical descriptions including Hartree—
Fock, post-Hartree—Fock, and the ubiquitous density func-
tional theory (DFT). These highly accurate methods can
elucidate structural and mechanical properties resulting from
electronic processes. Alternatively, energies can be calculated
using classical potentials, which are less computationally
demanding than quantum mechanical approaches. However,
classical simulations require accurate potential parameters
(force fields) and cannot straightforwardly model quantum
phenomena such as changes in chemical bonding.

Additionally, numerical simulation is used in the exploration
of states as illustrated in Figure 1b. A number of different
methods can be employed to result in an energy or dynamic
motion of the structure. Most simply, a single state can be
evaluated to obtain a single-point energy of the system;
however, more commonly, we seek to obtain an optimal
structure (local energy minimum) or transition states. Minima,
and other states, are realized by iterative single-point energy
evaluation corresponding to changes of the structure. More-
over, through molecular dynamics, the motion of structures is
generated by an exploration of states using iterative integration
of Newton’s laws of motion. Finally, states can be explored by
stochastic displacements—this is the basis for Monte Carlo
simulations, a useful method for simulating gas adsorption.

A number of properties, or time and length scales, are not
available by direct molecular simulation as described above.
Here we use several geometric and statistical physics based
approaches at the mesoscale. The combination of all these
methods is a rather powerful computational chemistry toolbox
for nanoporous materials, that we highlight in this review.
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Figure 1. Depiction of time scales captured by the simulation

approaches used in our research (a) and alternative simulation
methods for exploring a chemical energy surface (b).

H QUANTUM MECHANICAL SIMULATION

In order to study the structure, energetics, electronic states, and
other physicochemical properties of porous crystals with a high
level of accuracy, one of the tools we routinely use is quantum
chemistry calculations based on density functional theory
(DFT).”

Fundamentally, in quantum simulations of electronic ground-
state properties, the wave function has to be solved (y) to
satisfy the Schrddinger equation to give the energy (E) of the
system. An example of the Schrédinger equation for multiple
electrons interacting with multiple fixed nuclei is given in eqs 2,
3, and 4. In these equations m is the electron mass and the
Hamiltonian (H) has terms relating to the kinetic energy of
each electron (T), the interaction energy between the atomic
nuclei and each electron (V), and finally the interaction energy
between different electrons (i and j) for N electrons (U).

Hy = Ey ()
[T+ V+Uly=Ey (3)
Ry N N
- E Vi + ;V(ri) + ; E U(x, rj) w = Ey
(4)

The complete wave function is complicated, even for a
simple molecule, owing to each atom having many electrons.
For instance, the full electronic wave function for CO, is a 66-
dimensional function. Furthermore, the electron—electron
interaction term of the Hamiltonian (3, Y ,Y, U(r,r;)) is
crucial and requires considering the correlations of each
individual electron with all the other electrons. Therefore, the
wave function of the system is a complicated function that
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makes an exact or analytical solution impractical. Notably, wave
functions cannot be directly observed; however, eq S illustrates
how the density of electrons (n(r)) is determined from the
individual electron wave functions, v

w® =2 X w o)
i (%)

DFT methods apply two Hohenberg—Kohn theorems to
reduce the complexity of the problem immensely."” The first
states that the ground-state energy (and other properties) is
determined uniquely by the ground-state electron density. As a
consequence, a solution to the Schrédinger equation requires a
function of three spatial coordinates, the electron density,
rather than the original wave function, which has 3N variables
for N electrons. The second states that the correct electron
density minimizes the overall energy functional and sub-
sequently corresponds to the solution of the Schrédinger
equation. This latter theorem affords a direction toward finding
the electron density of the system. Kohn and Sham applied
these theorems to show the correct electron density can be
determined by solving a set of single electron equations of the
form illustrated in eq 6."> The solutions of these equations are
straightforward single-electron wave functions that depend on
three spatial coordinates.

[—;—mvz + V(r) + Vy(r) + ch(l‘)]ll/i(r) = ey(r)

The Kohn—Sham equations contain three potentials: V, Vy,
and Vyc. The first, V, describes the interaction between an
electron and the collection of atomic nuclei, similar to V. This
potential has a simple analytical form. The second, Vy,
describes the repulsion between the single-electron and the
total electron density. It is named the Hartree potential and is
defined by eq 7, where the electron density is given by n.
Importantly, this potential includes a self-interaction contribu-
tion, as the electron described by the Kohn—Sham equation
also contributes to the total electron density. Thus, Vy; includes
a nonphysical Coulombic interaction concerning an electron
and itself which is corrected for in V. This final potential,
Vxc, characterizes the electron exchange and correlation
interactions to the single-electron Kohn—Sham equations.
The potential is formally defined as a “functional derivative”
of the exchange—correlation energy (Exc) which is not known,
except for a free electron gas. Nevertheless, approximations
exist, which permit the calculation of certain physical quantities
accurately.

Vy(r) = ¢ /—Irn(—r 2/|d3r’ @)

To solve the Kohn—Sham equations, the definition of
Hartree potential (V};) requires the electron density (n), which
depends on the single-electron wave functions (y;), which in
turn requires the solution of the Kohn—Sham equations. As
such, an iterative approach is applied to obtain a solution."*
This is routinely achieved using the self-consistent field
method, an example of a simplified algorithm for this approach
is outlined below:

1. Define an initial trial electron density, n(r).

2. Calculate corresponding potentials, V, Vy, and Vy, for
the electron density.

3. Solve the Kohn—Sham equations to find the single-
electron wave functions, v,
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4. Calculate the electron density, nyg, from the constructed
Kohn—Sham equations using the single-electron wave
functions, y; from step 3.

5. Compare the calculated electron density, nys(r), with the
electron density used in solving the Kohn—Sham
equations, n(r). If the two densities are the same, then
this is the ground-state electron density and it can be
used to compute the total energy. If the two densities are
different, then a new trial electron density, n(r), is used
and the process begins again from step 2.

Reliable approximations for the exchange-correlation func-
tional (Exc) are required for the solution of the Kohn—Sham
equations. There are a number of approaches for treating
exchange-correlation, including local density approximation
(LDA), generalized-gradient approximation (GGA), meta-
GGA, and hybrid functionals. Each functional has particular
strengths and weaknesses that must be considered and proven.

Ultimately, the power of DFT is simplifying a 3N-
dimensional problem, where N is the number of electrons,
into a 3-dimensional problem. Consequently, DFT is a popular
choice for electronic structure calculation, of both molecules
and crystals, because of the accuracy obtained for relatively
cheap computational cost. Moreover, it is readily available and
widely implemented in several open source, academic, and
commercial software packages. Recently, by comparing the
equation of states for 71 elemental crystals with many DFT
codes and methods, a collection of the solid state community
has demonstrated the reproducibility of DFT simulations."
The results for modern codes and methods agree very well,
exhibiting pairwise differences which are comparable to
different experiments conducted with high-precision. In the
following, we show how we use DFT to predict theoretical
structures of new materials, model mechanical responses by
elastic constant calculations, and even study the dynamics of
materials on short time scales. Moreover, we describe how we
typically perform these calculations, and which technical aspects
are important for numerical efficiency and quality of results.

Modeling Crystals with DFT. The simplest type of DFT
calculation on crystal structures are “static” DFT calculations
used to explore local features of their energy landscape. This
includes single-point energy calculations, energy minimization,
harmonic vibration modes, and more. Since most of our
systems (MOFs and zeolites) typically feature high symmetry,
we employ the CrvsTaL14 software package.'® CrysTAL14 uses
localized basis sets and is appropriate for insulating systems,
such as zeolites and MOFs. This methodology is computation-
ally efficient in porous systems, compared to plane waves which
would describe void and occupied spaces with the same level of
precision. In practice, atomic basis sets are finite and their size
(and parametrization), for each element in the system, is
chosen as a compromise between computational cost and
accuracy. Depending on the accuracy needed, we use either the
DZVP (double-{ valence polarized) or TZVP (triple-{ valence
polarized) basis sets, or alternatively basis sets parametrized for
chemically similar compounds. Importantly, there is a detailed
library of basis sets cataloged by the software developers,
available online at http://www.crystal.unito.it/basis-sets.php.
To determine which type of basis set to use, we usually run
single-point energy calculations with the various candidate basis
sets, and check the quality of the description of the electronic
states obtained. This is typically done by comparing values of
electron density, atomic partial charges, and band gap to our
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chemical knowledge of the system, or higher-level quantum
chemical calculations.

For DFT calculations, the level of approximation of
electronic exchange and correlation effects (Exc) is the main
cause of approximation (or inaccuracy). Therefore, the choice
of exchange-correlation functional has a significant influence on
how the energy depends on atomic positions, and thus on all
calculated properties. While many options are available in the
literature and implemented in popular software, the decision on
exchange-correlation functional has to be guided by a
compromise between accuracy and computational cost. We—
like many others—typically use generalized-gradient approx-
imation (GGA) functionals to take into account the nonlocal
exchange and correlation effects, which is not possible with
local density approximation (LDA) functionals. Furthermore,
when computationally possible, we employ hybrid functionals
which provide a better description of the electronic exchange.
This is achieved by adding exact Hartree—Fock exchange,
mixed with exchange and correlation terms computed at the
GGA level.

Generally, the appropriate functional is contingent on the
property of interest. In practice, we have found that the PBE
functional revised for solids (PBESOL)'’ in addition to a
hybrid version, PBEO (PBESOLO), produce consistent and
physical results in many porous systems.'®'” Another common
choice of hybrid functional in the literature is B3LYP:*’
although it is usually considered more appropriate for
molecular calculations than in the solid state, it has been
widely used in MOFs and appears to give reliable results
overall. In cases of zeolites, which are built from stronger
interactions than MOFs, we note that most properties
(structure, energetics, mechanics) are well described already
with GGA functionals such as PBESOL. However, for
simulations of complex properties, such as band structures,
the use of hybrid functionals is preferred.”’

It is well-known, and should be noted here, that DFT is quite
poor at representing long-range correlation effects, typically
including dispersion interactions. When required, dispersion
correction terms are added to the functional using the D2
correction scheme detailed by Grimme and co-workers,”
implemented in the CrysTAL14 software. The D2 correction is a
relatively simple function of interatomic distances. This
includes adjustable parameters fitted to interaction and
conformational energies computed using high-level wave
function methods. Subsequently, this correction is added to
the energy obtained by DFT and, as such, does not directly
modify electron density. Notably, there are a number of
alternative dispersion correction methods,” such as D3 and the
many-body-dispersion (MBD) scheme.”*** Dispersion correc-
tions are often essential, and we have found they can strongly
influence energetic and mechanical properties, especially for
porous structures. Specifically, in MOF systems, dispersion
corrections often improve structural agreement with exper-
imental crystal structures—although counter-examples can be
found because Grimme’s simple and empirical “D2” correction
scheme can lead to overestimation of the dispersive interactions
at intermediate intermolecular distances (6—10 A). Thus, for
each system, we benchmark the performance of both
approaches, without and with dispersion, to experimental
data: in particular, we consider the crystal density, unit cell
parameters, and key intermolecular distances (7—z stacking,
hydrogen bonds, etc.), crucial quantities typically affected by
dispersive interactions.
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Another important consideration for DFT calculations of
crystals is the choice of reciprocal space sampling. This is
controlled by a shrinking factor, used to generate a
corresponding grid of k-points in reciprocal space. For
structures with very large unit cells, reciprocal space sampling
can be limited to the I" point; in general, it should be chosen so
as to reach convergence on single-point energy. Recently, the
importance of k-point convergence has been clearly described
in simulations of MIL-47(V).*® A rule of thumb we often use,
as a starting point, is to have the smallest lattice parameter
multiplied by the value of the shrinking parameter be around
20—30 A. In some structures with very asymmetric cells, for
example MIL-47,"” we use direction-dependent shrinking
parameters, to refine the mesh in specific directions. Within
CrystaLl4, the space group of the system (when known) is
considered to reduce the computational cost by reducing the
number of spatial integrals to compute, ideally by the order of
the space group. This can be very efficient: for example the
MOF structure UiO-66, with a cubic cell and space group
F43m, and point group symmetries, reduces the CPU time by a
factor of approximately 16 (for a single-point energy calculation
on 12 processors) (Figure 2).

Finally, we note that a simple and useful way to supervise
DFT calculations is to examine, during the self-consistent field
(SCF) iteration scheme for the calculation of the density and
energy, the atomic partial charges (calculated by the software
with the Mulliken scheme). Because we have a reasonable
chemical intuition of these quantities, they provide an initial
and rapid feedback as to the quality of the density calculation:
when the Si atoms in a zeolite acquire a net charge of 15, the
simulation is certainly diverging! Subsequently, if convergence
seems unreachable, with standard minimization schemes and
parameters, one can modify the initial population of orbitals for
the first SCF cycle as to increase the damping of the SCF
algorithm, to achieve self-consistence. Alternatively, the
Broyden scheme for self-consistent field calculations is very
robust.”**’ Mulliken population analysis, commonly used to
obtain atomic partial charges, has explicit basis set depend-
ence’® and may not display good accuracy. As atomic partial
charges are nonphysical quantities, there are complications and
subjectivity to calculation of these values. Thus, there are a
number of alternative methods which are more suited to
accurately describing porous systems.”’ However, to simply
verify calculations, we find the Mulliken method is adequate.

The quantum mechanical simulations conducted by our
group primarily use the CRysTaL14 software, which is unique in
treating periodic systems with a crystalline local orbital method.
However, we note many groups employ simulation codes, such
as Quantum Espresso”’ and VASP,** which use a plane-wave
approach. This method implicitly treats periodicity in the
description of the wave function. While both approaches have
particular advantages and disadvantages, for example, plane-
wave methods require a large number of basis functions
(augmenting significantly memory requirements) and crystal-
line local orbitals do not efficiently treat low symmetry
systems.”> In particular, researchers have employed plane-
wave approaches to investigate many nanoporous material
properties, including the reactivity of zeolite catalysts®® and
electrical conductivity in MOFs.>’

Calculation of Structural and Mechanical Properties.
We highlight here the typical output we obtain from DFT
calculations of porous crystals. For further detail, one can find
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Figure 2. An example of the use of density functional theory (DFT)
calculations for porous materials: calculation of (a) the structure of a
defective UiO-66(Zr) MOF with partial substitution of benzene
dicarboxylate linkers by formate capping ligands;'® (b) its directional
Young’s modulus, in units of GPa, plotted by the ELATE software®*
from the DFT-computed elastic constants.

comprehensive reviews on the many properties calculated using
DFT simulation.”®*

The most common result—and arguably the most crucial
result—of DFT calculations on porous crystals is the optimized
structure, including cell parameters and atomic positions.
Geometry optimizations (CrystaLl4 keyword OPTGEOM)
consist of iteratively updating the structure and subsequently
computing energies and forces. Notably, initial structures are
chosen from known structures such as crystallographic data;
otherwise, several plausible structures are considered to sample
the phase space. This iterative procedure is repeated until
convergence criteria are met, i.e. until atomic displacements and
forces are smaller than a chosen threshold. To determine the
direction and amplitude of each step (in the R*N space of
atomic coordinates, with N the number of atoms per cell), we
generally use a numerical quasi-Newton method, the Broyden—
Fletcher—Goldfarb—Shanno algorithm. We use the conver-
gence criteria standard in CrystaLl4 (9 X 107* Ry/bohr on
each component of the energy gradient). Occasionally tighter
criteria are used to ensure higher accuracy, typically for
properties linked to derivatives of the energy (vibration modes
or mechanical properties, see below). The number of time steps
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needed to reach convergence can vary between 10 and 20,
typical for small, high-symmetry systems with rather smooth
energy landscapes. However, this can be >200 in problematic
cases, or if the initial structure is obviously far from optimal.
This occurs if simulations begin with a poorly resolved
experimental structure or atoms are in unrealistic proximity.
Furthermore, as optimizations are constrained to the space
group symmetry, we often relax space group requirements and
perturb the system. Consequently, we ensure a minimum of
lower energy, with a lower symmetry, cannot be found and the
space group constraint is appropriate.

In the case of mechanical properties calculations (keyword
ELASTCON), the main output is the 6 X 6 tensor of second-
order elastic constants C; in Voigt notation. These are
computed by performing small deformations along each of
the 6 deformation modes, or a subset of those in high
symmetry systems (2 modes are enough for cubic space
groups). We then analyze it further with tensor analysis tools*'
such as the ELATE web application®” (http://progs.coudert.
name/elate) developed in our group to investigate the
mechanical properties of the material studied, including both
volumetric and anisotropic properties. The primary properties
are the bulk modulus, in addition to direction-dependent
Young’s moduli, linear compressibilities, shear moduli, and
Poisson’s ratios.'”** These calculations are generally more
costly than geometry optimizations, with the computation time
depending not only on the system size but also on a number of
other factors: the number of deformation modes to be
performed, from 2 in cubic systems to 6 in triclinic systems;
the point group symmetries remaining after individual
deformations (for an orthorhombic system, shearing modes
take much more time than compression modes, which do not
break any symmetry); and the number of steps needed to reach
convergence, after each cell deformation, which can be
decreased by decreasing the deformation amplitude. We have
included a representative input file, used for mechanical
property simulations with CrysTaLl4, in the Supporting
Information.

Aside from elastic constants, we also use DFT calculations to
analyze vibrational modes, examining frequencies and mode
eigenvectors. Periodic structures have a number of quantized
modes of vibration, in which the lattice uniformly oscillates.
These normal vibrational modes, also called phonons, influence
a number of 4»physical properties, such as thermal and electrical
conductivity. 3 The starting point, for these simulations, must
be a properly optimized structure, a local minimum in the space
of atomic coordinates. A standard approach, generally sufficient
for systems with large unit cells (cell parameters > 15 A) is to
compute harmonic vibrations (keyword FREQCALC), where
all atoms with identical fractional coordinates in neighboring
cells vibrate in phase. Specifically, these calculations allow for
the estimation of the contribution of vibrations to the entropy
as described in eq 8, where f# = 1/kzT.** This description can
be generalized to other thermodynamic quantities, including
heat capacity. In addition, we estimate Griineisen parameters,
which in turn give access to the thermal expansion coefficient.*’

3N ﬂg.
Svib = kB Z [—In(l - e_ﬂg’) + e—/jfl_

1] (8)

Vibrational mode calculations consists of 3N independent
steps (or usually less, thanks to symmetry relations). At each
step, one atomic coordinate is slightly modified (typically by 0.3
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pm) and the resulting energy variation and forces are computed
taking into account a possible lowering of symmetry. Even for
high-symmetry systems, these computations can be computa-
tionally quite demanding since most deformations break most
symmetries; for Ui0-66," while a single-point and force
calculation takes about 4 min (using 12 processors), the whole
calculation of vibration frequencies takes about 11 h, perform-
ing only 18 deformations. For systems with small unit cells, it is
safer to compute phonon frequencies on a finite number of
points of the Brillouin zone (keywords SCELPHONO and
DISPERSI), rather than merely at the I" point. Commonly,
vibrational calculations result in identification of imaginary
frequencies, a nonphysical result and indication the structure is
not a local minima. To address such spurious frequencies, we
suggest increasing the DFT convergence to extremely high-
precision, such that frequencies may be more accurately
assigned to zero or positive frequencies. However, this may
also be an indication that the initial configuration was not well
optimized.

These types of simulations are usually tractable for several
hundreds of atoms per unit cell on 16 cores. Except for specific
cases, the parallelization becomes inefficient when exceeding 20
to 30 processors. For example, when the shrinking parameter is
higher, using more cores becomes more efficient. These
simulations can be run on a desktop workstation with more
than 16 cores, local computing facilities, or national high-
performance computing (HPC) centers. The largest system
ever treated in the group, at the national HPC scale, is the
metal—organic framework DUT-49 with 1728 atoms in a
conventional cell of 46.7 A parameter (cubic space group Pa3,
72 atoms in the asymmetric unit).”’

Ab Initio Molecular Dynamics. In addition to the study of
structures and “local” properties (often called “zero Kelvin”
properties, because they do not account for thermal motions
and entropy), the finite-temperature motion of condensed
matter systems can be examined at the quantum chemical level
using ab initio molecular dynamics (AIMD). Although much
less frequent than local DFT calculations because of its much
higher computational cost, we consider AIMD to be an
essential tool to probe dynamical properties in situations where
subnanosecond dynamics are relevant. It is applicable to all
condensed matter systems, not limited to crystals but also
including interfaces and complex liquids, as demonstrated in a
recent study of the transport mechanism of carbon dioxide in
molten carbonates.”® We highlight here our use of AIMD to
study MOFs and zeolitic frameworks as well as porous
materials where adsorbates are present, using the CP2K
simulation package—a general open source quantum chemistry
and solid state physics simulation package, available at https://
www.cp2k.org.

The idea behind molecular dynamics (MD) is to explore the
dynamic motion of molecules by numerically solving Newton’s
equations of motion:

2
= —ViU(rN) = miE

N
E() > ©)

1

The force, F, experienced by an atom i of mass m; and position
t; is equal to the negative of the gradient, V;, of the potential
energy of the system defined by electron density, U(rV).
Subsequently, Newton’s second law relates the force to the
particle’s mass multiplied by the second derivative of its
position, r, with respect to time, , i.e. the particle’s acceleration.
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In ab initio MD, the atomic forces are calculated at the quantum
chemical level, typically using DFT. CP2K uses the Gaussian
and plane wave (GPW) method or a Gaussian and augmented
plane wave (GAPW) method to accurately describe the
electronic density within the system.”” VandeVondele et al.
have reported a complete and thorough description of these
methods used by CP2K and other codes.””*"

The motion of the nuclei follows Newton’s equation, and is
integrated numerically with a finite size time step At. At each
time step the wave function is optimized in the DFT
framework, thus combining the accuracy of ab initio calculations
and the ability to study time dependent phenomena. This
method is thus much more costly that static calculations, but
can be used to study mechanisms where bond cleavage and
bond formation are essential or where no classical approx-
imation (force field) of the intra- and intermolecular
interactions is available.

Simulations in several different thermodynamic ensembles
can be performed: constant number of particles, volume, and
temperature (N, V, T); constant number of particles, pressure,
and temperature (N, P, T). Moreover, the simulation of rare
events such as chemical reactions and infrequent diffusion using
AIMD is challenging. By combining AIMD with constrained
dynamics and metadynamics methods, we and other
researchers have been able to elucidate properties relating to
rare events with high accuracy.””>’ The output from the
simulations is typically the system’s wave function—although it
is costly to store on disk due to its large size—and population
charges on each atom (and for each time step). AIMD
simulations primarily result in the positions, the velocities, and
the forces on each atom of the system as well as the
instantaneous temperature, stress tensor, and, for (N, p, T)
simulations, cell parameters.

By analysis of the resulting trajectories we can calculate a
number of properties. First, pair distribution functions (PDFs)
which, when all atoms are taken into account, can be compared
with PDF from X-ray diffraction analyses. This is useful for
validating simulations. By examining individual PDFs, we are
able to identify the relevant interactions, which is not possible
from experimental data. Moreover, statistical analyses are used
to quantify events such as bond cleavage and formation;
specifically, this was used to study the mechanism of
pyrocarbonate formation and its separation into carbon dioxide
and carbonate anion.*® Additionally, computing coordination
numbers aids in monitoring the stability of coordination
networks.”* Vibrational modes within the framework or in the
presence of a guest molecule can be obtained by effective
normal-mode analysis,”> and preferred sites of adsorption are
found by simple analysis of the spatial distribution of
adsorbates. Extraction of fundamental free energy profiles is
achieved by identifying a potential of mean force or from more
sophisticated approaches using constraint molecular dynamics
such as the Blue Moon Ensemble approach.””*” These
methods are quite powerful; for example, we have recently
used them to uncover the mechanism by which a carbon
dioxide molecule can permeate a zeolite where cations block
narrow pores for other gases (Figure 3).

Importantly, these methods are quite costly in terms of
computational power. For simulations in the (N, V, T)
ensemble of MOFs with approximately 300 atoms, we can
simulate between 2000 and 6000 fs in 10 h using 256 cores on
national high-performance computing systems. Simulations in
the (N, P, T) ensemble are often three times slower than
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Figure 3. AIMD simulations allowed us to uncover the mechanism by
which a carbon dioxide molecule can permeate a zeolite where cations
block narrow pores for other gases by taking advantage of cations
thermal motion.*” In gray: Na-RHO zeolitic framework; blue: Na*
cations; CO, (cyan and red) guest molecules can bypass the sodium
ions and diffuse through the zeolite’s windows, while methane (cyan
and white) cannot.

(N,V,T) simulations, as the temperature and pressure converge
much slower. Despite this, we were able to accurately describe
two structurally different phases of a very flexible MOF.>® In
particular, massive parallelization is not possible for this type of
calculation; specifically, an increase from 64 to 128 cores has an
efficiency of about 40%, and from 128 to 256 cores about 50%,
but increasing from 256 to 512 cores can even make the
calculation 20% slower. Scaling studies are crucial before
running simulations in order to be computationally efficient, or
at least not to waste computational resources.

During simulations, we check that the chosen parameters
allow us to represent the system correctly. Conservation of
energy and other conserved quantities are essential, in addition
to convergence of temperature, as it shows that the thermostat
has the desired effect, and the same goes for the pressure
(keeping in mind that pressure fluctuations on such small
systems can be very large (~10000 bar for a volume of 4000
A®)). We also check that the cell parameters and the charges
remain plausible and they do not diverge or converge to
obviously nonphysical values. The number of self-consistent
field steps needed to converge the energy at each time step is
also a good hint of whether or not the input parameters, such as
the time step, have been well-chosen. It is also crucial to check
that no unrealistic phenomena occur, such as a zeolite
framework breaking covalent bonds in usual conditions of
temperature and pressure.

Additionally, we have attached a representative input file for
an MD simulation in the Supporting Information. This
corresponds to a MD run for zeolite Na-RHO with carbon
dioxide adsorbed.

B CLASSICAL SIMULATION

Herein we have shown the wealth of information obtainable by
quantum mechanical simulation; however, for longer time
scales and larger systems, classical molecular simulations are
employed. Typically, classical simulations can be performed
routinely on systems containing thousands of atoms, or in more
extreme cases for systems up to 100000 atoms’ —although
due to their periodic nature, it is not common in simulations of
crystalline materials. Simulation times in classical dynamics can
also be much larger that in ab initio MD, ranging from a few
nanoseconds to hundreds of nanoseconds. This allows
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molecular level insight into macroscopic material properties
such as adsorption, diffusion, and framework dynamics. 0-62

Force Field Parameters. Potential energy (U(r")) in
classical simulations is calculated from an interatomic potential
energy function that is described by parameters from the force
field. Importantly, the choice and implementation of force fields
is crucial to the accuracy obtained by this method.

Force fields are parametrized such as to reproduce the
molecular geometry or thermodynamic properties reported
experimentally or described by higher level ab initio
calculations. The general functional form of the potential
energy function in classical molecular simulation includes
bonded terms for interactions of atoms that are linked by
covalent bonds (or metal—ligand bonds), and nonbonded or
noncovalent terms that describe long-range electrostatic and
van der Waals forces illustrated in Figure 4. The specific
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Figure 4. Examples of the structural parameters explicitly described by
force field models used in classical molecular simulations.

decomposition of the terms depends on the force field applied,
but a general form for the total energy in an additive force field
is illustrated in eqs 10, 11, and 12.

[]total = Ubonded + Unonbonded (10)
Ubonded = Ubond + L]angle + []dihedral (11)
L]nonbonded = IJelectros‘ratic + []van der Waals (12)

There are a great variety of options for force fields, with early
examples developed to reproduce the geometry of small organic
molecules and later adapted to treat more complex function-
alized molecules.”> Moreover, there are a number of general
force fields that have been develc;ped to treat all atoms in the
periodic table,** biomolecules,”” and condensed matter.®
Simulations employing these general force fields have been
shown to be applicable to many porous systems; in particular,
universal force field (UFF)®* parameters have been ubiquitous
in calculating intermolecular energies (U, ger waas) fOr gas
adsorption simulations.”’

Force fields for porous structures with a high degree of
flexibility require good accuracy in the description of
intramolecular interactions in the structure, in particular for
the low-frequency phonon modes present, which is often not
captured by generic force fields.”® To this end, researchers have
used ab initio simulation to derive accurate system specific force
fields. van Speybroeck and co-workers have developed QuickFF
for the easy derivation of new force fields from ab initio
simulations,”” which has been used to describe a number of
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flexible MOFs and explore thermodynamics.”® Alternatively,
Heine et al. have extended UFF for use in MOF systems by
revising and adding parameters relating to common transition
metal nodes.”' Nevertheless, the choice of force field applied in
classical simulation must be initially tested against experimental
or quantum chemistry methods to demonstrate the accuracy of
the method.

Methodologies and Implementation. Though classical
simulation, like quantum mechanical simulation, can be used to
obtain single-point energies and local minima, we primarily use
classical methods to investigate the dynamics of molecules and
adsorption processes.

Molecular dynamics is achieved by the same iterative process
described previously for AIMD. However, owing to the cheaper
computational costs of classical simulation, we can follow
processes on a larger scale, such as water confined in zeolites.””
In addition to the choice of force field, as discussed previously,
the options of time step and thermostat (or in the case of (N, P,
T) simulations thermostat and barostat) are crucial. For
greatest computational efficiency, the time step should be
chosen as large as possible such to minimize the number of
calculation steps for a given time period. However, the time
step must be verified, so that it does not result in drifts or large
fluctuations in energy and other conserved quantities.””
Notably, this is also true for AIMD simulations. Moreover,
molecular dynamics explicitly represents the (N, V, E)
ensemble; thus, to compare to experimental systems, dynamic
constraints (thermostat and barostat), applied to the movement
or particles or cell parameters, are added. This results in a fixed
averaged value of temperature or pressure resulting in the (N,
V, T) and (N, P, T) ensembles. There are many approaches to
fixing these averages, each with particular advantages and
disadvantages that must be considered before application.”””
In particular, we routinely use the Nosé—Hoover thermostat
and barostat.”*~”® When using this method, there is a choice of
relaxation time, which defines the time scale for the relaxation
of temperature or pressure. We often choose relaxation times of
1-35 ps, ensuring the temperature and pressure do not fluctuate
significantly and the equilibration time is not unnecessarily
long.

The adsorption process can be simulated by Monte Carlo
(MC) simulations which consist of trial displacement, insertion,
and removal of gas molecules in the framework structure.”” The
criteria for accepting a trial displacement are often described by
the Metropolis algorithm.”® In the Metropolis algorithm in a
simple application, the below steps are followed until a move is
accepted.

1. Calculate the potential energy (U;) of the initial state.
2. Choose a trial displacement of a random molecule from a
uniform random distribution.

Calculate the potential energy of the new state (Uf).

If Uy < U, accept the move.

5. If Uy > U, select a random number, w, where w € [0,1]
from a uniform distribution and if exp[—ﬂ(Uf —-U)]>w,
accept the move.

6. Repeat steps 2—35.

> »

In grand-canonical Monte Carlo, the number of molecules
adsorbed in the porous structure evolves over the course of the
simulation, and after a period of equilibration, it will fluctuate
around an equilibrium value imitating the experimental system,
in which the adsorbed phase is at equilibrium with a gas
reservoir. Conducting Monte Carlo simulations can be very

206

straightforward; however, there are a number of important
options and analyses to consider before conducting a
simulation, including the relative probability of different trial
moves (rotation, displacement, reinsertion, and more) and
ensuring convergence in energy or number of adsorbed
particles. Dubbeldam et al. have produced an excellent resource
for the application of MC in this area.”

In particular, we have employed classical molecular dynamics
to examine the stability of 18 zeolitic imidazolate frameworks
(Z1Fs), displayed in Figure 5.*' By using a classical approach,

a

Zn

Volume Thermal Expansion (MK™)

Figure 5. Components of zeolitic imidazolate frameworks (ZIFs) and
their possible topologies examined (a). Resulting volume thermal
expansion coefficients, simulated by classical molecular dynamics, for
the ZIF frameworks (b). This is compared to values reported in the
literature for other metal—organic frameworks, portrayed in a darker
shade. This figure was adapted from ref 81.

we were able to simulate the framework dynamics of the 18
frameworks at multiple temperatures for more than S ns, a scale
not computationally feasible using ab initio methods. Unit cell
fluctuations were measured in response to changes in
temperature and pressure to quantify the relative stability of
the topologies. Notably, we observed a number of the examined
ZIFs displaying significant negative thermal expansion (Figure
5), and many of the included hypothetical topologies are not
mechanically stable at reasonable temperatures.

As computational chemists, our findings rely on software
implementations of the simulation algorithms described briefly
above. The two main categories of software used in simulation
are small, homegrown software that are used at the scale of one
or two research groups, and very big software, used by
hundreds (if not thousands) of researchers. Most of the
classical molecular dynamics codes around belong to the
second category, such as LAMMPS,*” GROMACS,** and DL-
POLY.* This situation arose mainly because of the complexity
of the algorithms used in molecular dynamics, where very-large-
scale systems are simulated on supercomputers, and significant
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development effort is required to get an efficient implementa-
tion. On the other hand, most publicly available MC codes,
such as RASPA®® and many others, are homegrown software.
This can be explained by the diversity of the algorithms, and the
capacity to tailor a specific MC move for a specific system. For
example, the GIBBS code®® was initially developed for the
simulation of hydrocarbons in zeolites, and as such proposes
specific MC moves such as chain reptation, partial rotation of
molecules, and biased insertion/deletion of chain molecules.

Sometimes, the existing software does not provide what we
need for our studies. For example, the coupling between
adsorption and deformation of the guest framework is hard to
study with the current methods. This coupling is at the origin
of the complex and fascinating behaviors of some MOF,
including breathing,®” gate-opening,”® or more complex
behaviors.”” The natural ensemble for simulating these
phenomena is the osmotic ensemble,”” which is an extension
of the grand-canonical ensemble. Molecular dynamics cannot
be used easily for simulations in the grand-canonical ensemble,
because most of the algorithms rely on an Hamiltonian
dynamic, which is hard to obtain with a varying number of
particles. (Some schemes have been proposed for grand-
canonical molecular dynamics,””" but it is not yet clear
whether the ensemble simulated using these scheme is the
grand-canonical ensemble or not.) On the other hand, MC
methods can easily sample the grand-canonical ensemble, but
have a lot more difficulties to reproduce large amplitude and
collective movements, which naturally occur in these
phenomena. One solution to get efficient sampling of the
osmotic ensemble is to use a hybrid Monte-Carlo simulation,
where short runs of molecular dynamics are used as MC moves.

Unfortunately, hybrid MC simulations are not implemented
in any of the current widely used molecular simulation software,
and implementing such a feature in existing codes would
necessitate large flexibility of the code base.”” As a result, we
have begun to write a new simulation code, with the explicit
goals of being modular and to ease the new methods. We aim
to make this code easy to read and to modify, and reasonably
fast. At the time of writing, the code is able to perform energy
minimization, molecular dynamics simulations in the (N, V, E),
(N, V, T), and (N, P, T) ensemble, MC simulations in the (N,
V, T), (N, P, T), grand-canonical ensemble, and hybrid MC
simulation in all ensembles, including the osmotic ensemble. All
these simulation methods share the same implementation of
energy evaluation, including Ewald sum and Wolf sum for the
treatment of electrostatic interactions.”””* The software is
undergoing a cleaning phase before we share it openly with the
community.

Currently the development of scientific software is often
overlooked, with software bugs that either give wrong results or
prevent reproducibility.”> To improve software quality and
maintainability, scientists can and should use proven techniques
from software engineering.”® These techniques are moderns
answers to an old problem: humans are fallible, how do we
make sure that the code is correct? Methods we use for the
development of our in-house software include version control
using git”” and Github;”® unit tests, which check the behavior of
one function only; and integration tests, which test that
multiple parts of the code work together (for example, is the
energy constant during a molecular dynamics simulation, do we
get the pressure of the system right in (N, P, T) MC). All these
tests are run each time new code is written, usin%gmultiple

compilers and operating systems. Services like Travis™~ provide
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server farms for free for open-source projects to build and run
tests using Linux or OS X and various compilers (GCC and
clang). Additional code review ensures that the code is read and
understood by different persons, catching some additional
mistakes. Together, theses methods help to ensure the
reproducibility of the simulations and improve the usability of
the resulting software by removing a lot of bugs.

B MESOSCALE SIMULATION

We have shown how characterization at the quantum and
atomistic scale can elucidate interesting phenomena exhibited
by porous materials. However, there are limits to the efficiency
and system size accessible by these methods. To achieve
examination of the mesoscopic properties of porosity and large-
scale transport processes, we use a number of tools which take
further approximations to the chemistry structure.

Pore Structure ldentification. Surface area and pore
metrics are vital characteristics of porous materials, particularly
for applications in gas storage and separation, where the
performance of materials is often correlated with these
quantities.'”’ Notably, MOFs are reported to have very high
surface areas, over 7000 m? g_1 ;19" however, surface area cannot
be measured directly from experiments. The surface area of a
porous material is commonly obtained by application of
Brunauer—Emmett—Teller (BET) theory to Ar or N,
adsorption isotherms.'”>'”* The BET method relies upon a
number of assumptions: adsorption occurs on a homogeneous
surface, no lateral interactions occur between adsorbed
molecules, and Langmuir theory is applicable to each adsorbed
layer. While for a number of cases these assumptions may not
hold true,"”* and while such surface area measurements give no
microscopic insight into the nature of the porosity, being a
standard analysis technique, they offer a widely used, simple,
and reproducible characterization tool for nanoporous materi-
als.

There are a number of algorithms and tools that are used to
obtain pore metrics from a well-defined periodic structure. For
the most direct method, the surface area and pore volume can
be calculated geometrically from the crystal structure.'’®
Popular through application in the Accelrys Materials Studio,
the surface area of a material corresponds to the area traced out
by the center of a probe particle as the probe particle is moved
across the surface of the framework atoms, illustrated in Figure
6a. These accessible areas calculated with a probe molecule
equivalent to the size of nitrogen are in good agreement with
the experimental BET surface areas—although exceptions can
arise because of the dynamic nature of the framework, or pore
blocking by guest molecules due to incomplete activation of the
experimental samples. Alternatively, there are a number of
more complex methods to describe the detailed porositg of a
periodic system including Poreblazer,'® ZEOMICS,'"” and
Zeo++."% Each of these methods can identify the pore size
distribution, maximum pore size, and pore limiting diameter to
result in a clear picture of the system’s pore structure. An
example of the pore metrics obtainable using Zeo++ is
represented in Figure 6b.

The methods outlined here provide a crucial role of bridging
the microscopic structure, elucidated by quantum mechanical
or classical simulation, to the surface area or porosity observed
experimentally.

Fluid Flow and Adsorption. Understanding the interplay
between transport of species and adsorption in porous
materials, at a mesoscopic scale, is one of the main steps to
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Figure 6. Representation of the geometric method used to measure
the pore volume and surface area in porous materials (a). Additionally,
the pore information obtained by software such as Zeo++, limiting
pore diameter (LPD), and maximum pore diameters (MPD) for pore
channels and maximum void diameters (MVD) can be found for
inaccessible voids present within the structure (b).
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improve the efficiency of porous materials for applications such
as ion capture, ion exchange, and phase separation. The number
of atoms or molecules needed to perform simulations with
molecular dynamics or Monte Carlo models at large length
scales (micrometer) makes atomistic approaches computation-
ally unfeasible. Macroscopic methods used in classical
computational fluid dynamics can be used to simulate fluid
behavior, but lack in their description of local phenomena, such
as adsorption. In between these two scales, there exist a few
mesoscale lattice-based methods, although they are much less
commonly used than atomistic simulations and computational
fluid dynamics. In our group, in order to computationally study
liquid flow and adsorption in porous materials, we use a
Lattice—Boltzmann (LB) model recently expanded to account
for adsorption.'”” Its basic principles are illustrated in Figure 7.
The Lattice—Boltzmann scheme is a computational fluid
dynamic (CFD) model working on a 3D mesh of equally
spaced nodes, i.e. a grid of cubic voxels. It allows us to compute
efficiently the fluid behavior in the material. Physical quantities
related to the fluid flow (such as the fluid velocity field) and the
adsorption (concentration of adsorbed and free species) are
stored for each node of the mesh. Then, instead of solving the
Navier—Stokes equations as is done in standard CFD methods,
these fields are numerically integrated in time through a
discrete formulation of the Boltzmann transport equation. The
algorithm we are using here is based on the scheme
summarized by Ladd and Verberg.''’ For a given external
force, equivalent to a drop pressure, it computes the flux and
density field of fluid. Here we investigate mesoporous materials,
and the regime is assumed to be linear with a no slip boundary
condition at the interface solid/liquid.

The LB model finds its roots in the lattice gas cellular
automata method and statistical physics with the introduction
of a Boltzmann equation.'"'™"'* It works on the propagation of
a single particle velocity distribution function f(r,c,t) represent-
ing the probability of one particle to be at position r with the
velocity ¢ at time f. This function is propagated on the lattice
using the discrete velocity model D3Q19 (3 dimensions, 19
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Figure 7. 2D graphic representation of the Lattice—Boltzmann scheme
expanded to account for adsorption. The solid part of the material is in
gray, the liquid part is in blue, and the colored gradients show the
adsorbed density. The figure below is a 3D binarized image of a porous
material obtained with X-ray tomography we may use as input for our
simulations.

speeds). Other velocity models are available, such as the
D3QlS or the D3Q27, but the D3Ql9 offers the best
compromise between speed and precision.''* The dynamics of
the LB scheme follows this propagation described in eq 13,
where f; represents the local Maxwell-Boltzmann equilibrium
distribution, 7 is the relaxation time, and F** accounts for
external forces. For a better understanding of the fundamentals
of the LB model, refer to the work of Succi.'’

f(r+ cAt, t + At)

=Ji(r, l’) " (f, (1’, t) T_,ft—(r; t)) + Fth

(13)

The LB model is coupled with a moment propagation
method"'®""” simulating the motion of species called “tracers”
inside the fluid. The adsorption part of the algorithm, taking
place at the solid/liquid interface, is introduced in the moment
propagation method.'” It has been recently improved to
account for saturation of the tracers on the adsorption sites and
thus reproduce a Langmuir adsorption type.''® The dispersion
coefficient, the diffusion coeflicient, the quantity adsorbed, and
the density adsorbed are computed in this part. This
coeflicients give interesting information about the motion of
tracers inside the fluid.

The LB scheme employed here has the particularity to be
adimensional. Inputs and output values are expressed as a
function of the distance between nodes and the time step. We
use an internal code to create input files and compute results.
This code includes a library of typical geometries automatically
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generated, such as slit pore, cylinder, honeycomb, and inverse
opal.

X-ray tomography imaging (see Figure 7) can be easily used
to create an input of real materials with a simple binarization
process. The definition of the lattice (3D cubic grid) of the LB
scheme corresponds exactly to the voxel definition of a 3D
image. This type of geometry gives a powerful tool to simulate
flow and adsorption in real materials.

The code is parallelized using OpenMP. We simulate
geometries up to 64 X 10° nodes on conventional multi-
threaded computers. In the case of small geometries (100—
1000 nodes), we run a simulation on 4 to 8 cores. For big
geometries (>1,000,000 nodes) we run simulations on 20 to 30
cores. We usually use convergence criteria on the mean fluid
velocity, fraction adsorbed, velocity autocorrelation function,
and dispersion coefficient. The dispersion coefficient is
computed from the velocity autocorrelation function. However,
we always consider carefully the convergence of the dispersion
coeflicient because a good convergence on the velocity
autocorrelation function does not necessarily imply a
convergence of the dispersion coefficient. A representative
input file used for LB simulations is demonstrated in the
Supporting Information.

B CONCLUSION

Computational chemistry is a useful toolbox for understanding
the very large diversity of physical and chemical phenomena
that can be observed among nanoporous materials. Herein, we
have outlined the wide variety of methods our group uses to
elucidate their physical and chemical properties, in addition to
those of fluids adsorbed in the materials’ nanosized pores. We
have described simulations at different “levels of theory” and
different time and length scales. Computationally demanding
simulations are used to investigate complex electronic
processes, by explicitly treating the electrons of each frame-
work. Alternatively, larger systems and gas adsorption can be
examined by classical potentials that describe atoms or groups
of atoms. Finally, we have illustrated statistical physics and
geometric approaches that we use to explore porosity and large-
scale transport. By using this toolbox of methods, in synergy
with experimental observations in general, and in situ and in
operando characterization in particular, one can obtain a broad
and complete picture of the system or process, as well as
unparalleled understanding into the microscopic behavior of
porous materials.
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