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ABSTRACT: We present here a computational model based on the lattice Boltzmann scheme to investigate the accessibility of
active adsorption sites in hierarchical porous materials to adsorbates in a flowing liquid. By studying the transport and adsorption
of tracers after they enter the pore space of the virtual sample, we characterize their kinetics as they pass through the pore space
and adsorb on the solid−liquid interface. The model is validated on simple geometries with a known analytical solution. We then
use it to investigate the influence of regular grooves or disordered roughness on the walls of a slit pore geometry, looking at the
impact on adsorption and transport. In particular, we highlight the importance of adsorption site accessibility, which depends on
the shape and connectivity of the pore space as well as the fluid flow profile and velocity.

1. INTRODUCTION

Materials with hierarchical porosity, ranging from nanometers
to micrometers, are of interest for a wide range of industrial
applications because they can potentially combine a high
specific surface area and high permeability, i.e., low resistance to
fluid flow. Such applications typically rely on the host−guest
surface interactions, for example, in phase separation, gas
mixture separation, and ion exchange and capture. In the liquid
phase, large-scale practical applications include, for example,
water decontamination and the removal of pollutants such as
heavy metals and radioactive ions.
Understanding the physical and chemical phenomena

involved in fluid transport and adsorption in hierarchical
porous materials is crucial to the optimization of existing
materials and the design of new materials. In particular, the
optimization of the pore space (pore dimensions and pore
geometry) for a chosen application is a great challenge. The
study of transport and adsorption in hierarchical porous
materials raises several open fundamental questions. One of
them deals with the kinetics of exchange between intercon-
nected pores of different sizes, between macropores and
mesopores or between mesopores and micropores. The
influence of the macroporosity on the accessibility of species

to the mesoporosity is both a very fundamental question and
yet one directly relevant to applications. It depends in nontrivial
ways on the geometry of the macropores and mesopores, as
well as the topology and interconnectivity of the two pore
networks, with each of these factors affecting the overall
performance of the material.
Despite its fundamental importance and impact, the

published literature is relatively scarce on investigations of the
kinetic accessibility of adsorption sites in porous materials with
hierarchical pore networks. The problem of fluid flow in
complex geometries and chromatographic systems has been
widely addressed by computational studies, including many
based on the lattice Boltzmann method.1−3 However, the
question of adsorption/desorption and the kinetics of tracers
has been less studied. One possible approach to this problem
has recently been proposed by Bota̧n et al., who developed a
lattice-based bottom-up model of adsorption and transport in
multiscale porous media4 by relying on a local thermodynamic
description.
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We describe here another approach, building upon a lattice
Boltzmann model recently extended to incorporate an accurate
description of the adsorption of solutes at the fluid−solid
interface.5,6 However, this model cannot in itself answer the
question of accessibility as it describes the steady state of fluid
flow and solute dynamics. In this work, we present an extension
of the lattice Boltzmann model to evaluate the accessibility of
active sites by simulating a system out of the steady state. We
illustrate it on the kinetics of adsorption on a pore model of a
crenelated slit pore, i.e., a larger main pore interconnected with
smaller side pockets.

2. METHODS
The method used in this work is based on a well-known numerical
simulation scheme for fluid dynamics, namely, the lattice Boltzmann
(LB) model.7 The lattice Boltzmann model finds its roots in the 1980s
and has several advantages compared to other computational fluid
dynamic methods, making it suitable to address systems at scales
intermediate between atomistic or coarse-grained simulations (at
smaller scale) and finite element-based computational fluid dynamics
(at larger scale), as shown in Figure 1.

In particular, the relative simplicity of the computational method
makes it easy to implement and to parallelize. The LB method works
through the propagation of the one-particle velocity distribution
function f(r, c, t) equivalent to the probability of a particle to be at
position r with velocity c at time t. For numerical integration, time,
space, and velocities are all discretized. The distribution function is
propagated in time through the following equation
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where f i is the component of f on velocity vector i, i.e., f i(r, t) = f(r, ci,
t). f i

e corresponds to the local Maxwell−Boltzmann equilibrium
distribution, τ is the relaxation time, and Fi

ext accounts for external
forces acting on the liquid and responsible for the fluid flow. This
equation is implemented following the method of Ladd and Verberg,8

relevant for simulations of fluid dynamics in porous materials. To
simulate the dynamical properties of solute dispersed in the fluid, we
use the moment propagation method proposed by Lowe and
Frenkel9,10 and further validated by Merks et al.11 A quantity P(r, t)
is defined on the lattice and propagated as follows
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where pi(r, t) corresponds to the probability of leaving node r with
velocity ci:
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Here, ρ is the fluid density, wi represents constant weights of the
velocity model (we chose in this work the D3Q19 model for the
discretization of velocities), Db is the diffusion coefficient of the tracers
in the fluid in the bulk phase, and vT is the fluid’s speed of sound
( = Δ Δv x t/T

2 1
3

2 2, with Δx being the lattice spacing).

In the published literature, there are relatively few computational
lattice-based fluid dynamics models that explicitly take into account
the dispersion of solutes and their adsorption at fluid−solid
interfaces.12−23 In this work, we account for adsorption at the
solid−liquid interface by following the technique developed by
Levesque et al.5 and refined in later work from our group,6,24

accounting for adsorption and desorption in a generic lattice
Boltzmann scheme, by modeling these processes through kinetic
rates of adsorption and desorption taking place at interfacial lattice
nodes. The adsorption of tracers in the fluid occurs on fluid nodes
having at least one solid node as a neighbor. It is described using the
adsorbed density of tracers Dads, which is defined only on adsorption
sites, and the free density of tracers Dfree, defined everywhere in the
fluid. The adsorption kinetics is described by three physical
parameters: the adsorption coefficient Ka, the desorption coefficient
Kd, and the saturation coefficient Dmax (or maximal uptake of a fluid
node). The balance between adsorbed and free density is integrated
numerically in time following first-order kinetics6
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where pa = KaΔt/Δx and pd = KdΔt.
In the simulations reported in this work, a slab of porous material

(our sample) is placed within a larger simulation box whose dimension
is larger along the direction of fluid flow (Figure 2). This leads to the

presence of two fluid reservoirs, one upstream from the porous matrix
and the other one downstream. We consider a no-slip boundary
condition at the fluid/solid interface and periodic boundary conditions
at four faces of the simulation box (in the xy and yz planes). However,
the periodic boundary conditions are removed in the moment
propagation on the two faces perpendicular to the flow (in the xz
plane). This general approach is relatively simple to implement and
has been used and validated once in the literature for lattice-based

Figure 1. Experimental and modelization techniques employed for
porous material characterization.

Figure 2. Schematic representation of the simulation box used in this
work.
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computational fluid dynamics of flow, dispersion, and catalysis in a
packed bed of catalytic spherical particles.25

To compute the transient kinetics of the tracers in the fluid, we
proceeded to modify the initialization of the free density at time t = 0.
The free density is homogeneously initialized on the upstream face of
the simulation box perpendicular to the flow; i.e., the free density is
initialized to a constant value on all fluid nodes in the plane y = 0 when
the flux is applied along the y direction, while the initial free density on
all other fluid nodes is set to zero.

3. PRACTICAL DETAILS
The data shown here are obtained in a laminar flow regime. We
use periodic boundary conditions on two axes (x and z) and
no-slip boundary conditions at the liquid/solid interface for the
lattice Boltzmann scheme. We used a convergence criterion of
10−14 (in relative step-to-step variation) for the average velocity
of the fluid along the three directions of space. The lattice
Boltzmann scheme employed here works in reduced units (Δx,
Δt, and Δp). The method used to switch between reduced
units and SI units is available in the Supporting Information.
Throughout the simulations, we fixed the bulk diffusion
coefficient (Db = 6.04 × 10−8 m2·s−1), the kinematic viscosity
(ν = 10−6 m2·s−1), the density of the fluid (ρ = 1000 kg·m−3),
and the density of the solid (ρs = 4970 kg·m−3).
We used the open-source lattice Boltzmann code laboetie,5

available online at https://github.com/maxlevesque/laboetie.
Simulations reported in this work were performed with a
modified version of the code, available at https://github.com/
maxlevesque/laboetie/tree/jmvanson (commit 809d0b7).
Input files and additional information can be found at our
group’s data repository at https://github.com/fxcoudert/
citable-data.

4. MODEL VALIDATION
This section is devoted to the validation of the modified
moment propagation scheme without a periodic boundary
condition in the flow direction. The key quantity for this is the
dispersion coefficient K, which represents the spreading of the
species inside the material, accounting for both advection and
diffusion. It characterizes the influence of the material on the
motion of species. In a periodic system, it can be computed
from the velocity autocorrelation function Z as

∫= − ∞
∞

K Z t Z t[ ( ) ( )]d
0 (5)

However, in the specific case of our modified technique with no
periodic boundary conditions in one direction, we validate the
model by computing the dispersion coefficient using a
macroscopic procedure common in the field of chromatog-
raphy.26 At a given position y = lm in the column (Figure 2), we
measure the flux of tracers passing through the section as a
function of time:
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The evolution of γ with time is the familiar elution curve, an
example of which is represented in Figure 3 for a pore with slit
geometry, a height of l = 50Δx, where lm has been set to 800Δx
with no adsorption (Ka = 0), and Fext = 2 × 10−6Δp/Δx.
Once the simulation has finished and the elution curve is

obtained, we fit it to a mathematical model. An impressive
number of functions have been proposed in the literature to fit
elution curves, and a review on the topic counts up to 90

different mathematical functions used for this purpose.27 Here,
we have chosen simplicity and fit elution curves with a Gaussian
function:

= σ− −f t A( ) e t t( ) /2 tR
2 2

(7)

The Gaussian is the most widely used model in the literature,
and our goal here is not to test in detail the influence of one
model or another but to validate our moment propagation
scheme. The results obtained do not depend much on the
shape of the fitting function because we use only the peak
position and half-maximum width. From the Gaussian fit, we
then calculate the height equivalent to a theoretical plate
(HETP), H, with the following equation28
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where σt is the width of the Gaussian fit and tR is the elution
time (time t at which γ(t) is maximal). Finally, the dispersion
coefficient K is computed using the HETP as26,29
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where ⟨vy⟩ corresponds to the average velocity of the tracers in
the fluid.
We can see in the simplest test case, that of a slit pore with

no adsorption (Ka = 0) (Figure 4), that the value of the
dispersion coefficient measured through the above procedure is
clearly dependent on the position of the measurement (the

Figure 3. Example of an elution curve γ(t) for a pore with slit
geometry, with l = 50Δx, lm = 800Δx, Ka = 0, and Fext = 2 × 10−6Δp/
Δx.

Figure 4. Evolution of the dispersion coefficient K as a function of lm
for different values of Fext (2 × 10−6, 4 × 10−6, 6 × 10−6, 8 × 10−6, and
10 × 10−6Δp/Δx) in a slit pore geometry, with l = 50Δx and Ka = 0.
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value of lm) and converges at high lm. This converged value,
obtained far from the sample, increases with external force Fext
as is expected. We then compare the values of the dispersion
coefficients thus obtained with the analytical solution, which is
known for a pore with slit geometry (of width lh)

5,6
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where Pe = lh⟨v⟩/Db is the Pećlet number and α = Ka/Kdh.
Figure 5 compares the values obtained from our model with

the analytical solution, for cases without adsorption and in the

presence of adsorption (panels a and b, respectively). We can
see that the results agree reasonably well with analytical values,
especially considering the numerous assumptions made in the
indirect macroscopic determination (in particular, the Gaussian
fit). The difference between indirect and analytical results
increases with the velocity of the fluid because of the fact that
the convergence of K with lm is slower at high values of the fluid
velocity. This difference also increases with the ratio Ka/Kd
because we employed a simplified Van Deemter equation (eq
9).

5. RESULTS AND DISCUSSION
In this section, we use the extended lattice Boltzmann model to
characterize the evolution with time of the tracers’ density
inside the fluid and adsorbed at the fluid−solid interface. This
yields useful information about the tracer kinetic and the

accessibility of the active adsorption sites in two different
geometries.

5.1. Crenelated Pore. We first study the kinetics of solute
transport and adsorption in a model geometry of a slit pore
with crenels. The geometry is characterized by the aspect ratio
of the crenels (or grooves), i.e., the ratio r between the crenel
depth and crenel width. Figure 6 shows the time evolution of

the density of tracers in the fluid in a slit pore with grooves
having an aspect ratio of r = 1 (whose depth and width are
equal). Three snapshots of the density are taken at three
moments along the simulation, as the pulse of tracers, starting
from the left side of the picture and moving toward the right
side following the fluid flow. We can see that in this case the
tracers’ density follows the profile of the fluid flow, with faster
flow in the center of the pore. We can also observe the effect of
adsorption at the solid−liquid interface in Figure 6b, where it
seems clear that the solute has access to the whole internal area
of the pores (i.e., that all adsorption sites are active within the
time frame of the simulation).
We depict the time evolution of tracers in a slit pore with

deeper crenels (r = 4, with all other parameters being equal) in
Figure 7. In contrast with the previous case (aspect ratio r = 1),
it is clear that for the deeper crenels the tracers do not have
access to the entirety of the pores’ internal surface. With the
chosen flow, it is clear that advection along the y axis is too fast
compared to the diffusion of the tracers along the perpendicular
x and z axes, which would give them access to the bottom of
the grooves. Thus, a dead volume exits in the material, and not
all adsorption sites are active under these given conditions. This
result parallels what we have seen in earlier work,6 in which we
studied the velocity profile for fluid flow in crenelated pore
systems and showed the existence of a dead volume, i.e., a
nonnegligible part of the crenel where the velocity of the fluid is
close to zero. We observe that this dead volume, which can
depend on the velocity of the fluid, becomes significant for r >
1, when the grooves’ depth is larger than their width, as the
fluid flow cannot enter the channel.
To quantify this effect, we have plotted in Figure 8 the

evolution of the adsorbed fraction as a function of simulation
time for various values of the crenels’ aspect ratio r. In all cases,

Figure 5. Comparison of the dispersion coefficient computed
numerically from our model and the known analytical solution. (a)
As a function of the average velocity of the fluid on the y direction, in
the absence of adsorption (Ka = 0). lx = Δx, ly = 1450Δx, lz = 52Δx,
and lm = 1400Δx. (b) In the presence of adsorption, as a function of
the ratio between the adsorption coefficient Ka and the desorption
coefficient Kd, with Fext = 5 × 107 Pa·m−1. Other parameters are lx =
Δx, ly = 1450Δx, lz = 52Δx, and lm = 1400Δx.

Figure 6. Time evolution of the density of a pulse of tracers in a
crenelated pore with liquid flow (flow from left to right). Aspect ratio
of the crenels r = 1, with h = 5, w = 5, and l = 20. (a) t = 1000Δt, (b) t
= 10 000Δt, and (c) t = 20 000Δt. Other parameters of the simulation
are lx = 1Δx, ly = 120Δx, lz = 32Δx, Fext = 109 Pa·m−1, Ka = 6.04 m·s−1,
Kd = 6.04 × 106 s−1, and Δx = 100 nm.
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we see that the adsorbed fraction, i.e., the adsorbate uptake,
goes through a maximum as a function of time and then decays
at long times. The maximum corresponds to the moment when
the cloud of tracers goes through the sample. For r < 1, the
maximum of the adsorbed fraction increase clearly with r: there,
all the adsorption sites are accessible to the adsorbate, and the
adsorbed fraction is proportional to the specific surface area,
which itself grows as a function of r (because we keep the
distance between the top of the crennels constant). For r > 1,
on the other hand, the adsorbed fraction is lower than for r < 1.
Even though the total specific surface area increases, the

adsorbed fraction decreases because not all of the sites are
accessible for a given fluid velocity. This highlights the fact that
an adsorbent material’s best performance under fluid flow is not
dictated merely by the absolute specific surface area but also by
its accessibility under specific conditions, as the system is not at
thermodynamic equilibrium (as is often considered the case for
gas adsorption) or in a steady state.

5.2. Random Roughness. The crenels studied in the
previous section can be considered to be an ordered roughness
or small-scale disorder on the surface of the walls of a slit pore.
Here, we extend this study by looking at the impact of a
disordered (or random) roughness of the adsorbent walls on
the kinetics of tracers in the fluid. The process by which our
rough slit pore models were generated, which relies on the
aggregation of smaller particles onto pre-existing walls, is
described in theSupporting Information. The roughness is
controlled by the parameter controlling the aggregation, Ac, so
that decreasing values of Ac lead to an increase in the roughness
of the walls.
Figure 9 presents a time lapse of 3D views of the advection

and adsorption of a pulse of tracers in a randomly aggregated
slit pore. The tracers start at t = 0 on the left side of the sample
(upstream), and the fluid flow goes from left to right. As in the
simpler geometry, the tracers follows the fluid flow profile, with
higher density at the center of the pore and lower density close
to the solid−liquid interface. At long times (see t = 9000 in
Figure 9), we observe a direct effect of adsorption on the
distribution of tracers because the tracer density is lower
downstream than upstream, in spite of the fact that the
adsorption and desorption coefficients are identical for all
adsorption sites. A large amount of solute is adsorbed upstream
at the solid−liquid interface, and thus the density of free tracers
decreases close to the interface. There is therefore a lower
concentration of available tracers on the adsorption sites
located downstream, and the adsorbed density is thus lower.
Quantitatively, we show in Figure 10 the maximum value of

the adsorbed fraction over time (the peak value of the elution
curve, max γ(t)) as a function of the external force Fext. The
different values of the aggregation criterion Ac represent three
different values of the roughness, where Ac =

1/8 corresponds to
the lowest roughness coefficient and Ac =

1/32 corresponds to
the highest roughness coefficient. In all cases, we observe that
Fa decreases when Fext increases, i.e., the fraction adsorbed is
lower for high velocities of the fluid. The tracers close to the
interface are adsorbed at the entrance of the material leading to
a lower density close to the adsorption sites. Then, the tracers
do not have time to diffuse perpendicularly to the flow to reach
the active sites. This effect increases with fluid velocity at
constant bulk diffusion coefficient and is, in a broader fashion,
dependent on the Pećlet number of the fluid flow.
We can see that, in the case of random heterogeneous

roughness, we do not observe the effect seen in the ordered
crenels: as the roughness increases, most adsorption sites
remain active and thus a higher roughness coefficient does not
yield a lower fraction adsorbed (as was the case for crenels).
That is because the side pockets of the slit pore created by our
aggregation procedure are well connected to the central area of
the slit pore and have an effective aspect ratio (width over
depth) that corresponds to the r < 1 case in the crenelated slit
pore. We thus see that having disordered multiscale porosity
can in this case be more efficient, in terms of fluid transport and
solute adsorption, than a well-ordered porous space of similar
dimensions.

Figure 7. Time evolution of the density of a pulse of tracers in a
crenelated pore with liquid flow (flow from left to right). Aspect ratio
of the crenels r = 4, with h = 20, w = 5, and l = 20. (a) t = 1000Δt, (b)
t = 5000Δt, and (c) t = 10 000Δt. Other parameters of the simulation
are the same as in Figure 6.

Figure 8. Effect of the ratio r between the height and the width of the
crenels on the fraction adsorbed. The simulation parameters are the
same as in Figure 7.
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6. CONCLUSIONS
We have here extended and applied a lattice Boltzmann scheme
for fluid transport in nanoporous materials, taking into account
the adsorption of solutes on the solid−liquid interface. We use
it to study the kinetics of tracer adsorption and the accessibility
of adsorption sites in simple models of hierarchical (or
multiscale) porosity. We validated this model on a simple slit
pore geometry and then used it to study a slit pore with grooves
(or side pockets) with various aspect ratios. We demonstrate
the potential limitations due to the inacessibility of some
adsorption sites in the presence of deep grooves, highlighting
the problem of the access of the solute to the mesoporosity
(here crenels) in the walls of the material in the presence of
flow. We then studied the effect of a more disordered type of
porosity through computer-generated models of rough slit
pores with controlled rugosity. This opens the way to future
work on complex, realistic models of hierarchical porous

materials coming from reconstructed 3D images obtained by X-
ray tomography.
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