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ABSTRACT: After the development of the famous “Transformer” network architecture and the meteoric rise of artificial
intelligence (AI)-powered chatbots, large language models (LLMs) have become an indispensable part of our daily activities. In this
rapidly evolving era, “all we need is attention” as Google’s famous transformer paper’s title [Vaswani et al., Adv. Neural Inf. Process.
Syst. 2017, 30] implies: We need to focus on and give “attention” to what we have at hand, then consider what we can do further.
What can LLMs offer for immediate short-term adaptation? Currently, the most common applications in metal−organic framework
(MOF) research include automating literature reviews and data extraction to accelerate the material discovery process. In this
perspective, we discuss the latest developments in machine-learning and deep-learning research on MOF materials and reflect on
how their utilization has evolved within the LLM domain from this standpoint. We finally explore future benefits to accelerate and
automate materials development research.

■ INTRODUCTION
The combinatorial nature of metal−organic frameworks
(MOFs) results in a vast chemical toolset and gigantic
materials space, offering researchers a theoretically infinite
number of candidate materials to choose from for applications
spanning from gas storage and separation,1,2 to drug
delivery.3−5 Given the diversity of this enormous chemical
space, it is important to reflect on how we can explore this
space efficiently in search of the “top” material for a given
application. Data-driven techniques (represented in Figure 1)
have emerged in recent years as the primary tool for
streamlining the identification of the top MOFs. As shown in
Figure 1, machine learning (ML) and deep learning (DL)
studies are diverse. On the other hand, large language model
(LLM) applications of MOFs are still limited6−27 but have
been increasing rapidly in the last two years.
Additional to the data-centric “tour de force” of ML

methodologies, the applicability of ML tools in the field of
MOF research also appears in the development of machine
learning potentials (MLPs), which provide a novel approach to
accurately capturing complex interactions with near quantum
mechanical precision, while dramatically reducing computa-
tional costs for acquiring high-quality data sets, a key
ingredient to further train reliable ML-predictive models.28−39

In this perspective, we begin our journey by exploring the
use of ML methods for predicting structure−property
relationships in MOFs. We then discuss the transformative
role of DL and LLMs in MOF research, emphasizing their
potential to revolutionize the design of novel MOFs with
tailored properties on demand. The capability of MLPs to
deliver highly accurate predictions, obtained from molecular

simulations of MOFs under diverse conditions, is also
highlighted. Ensuring easy access to data from diverse material
databases, models, and user-friendly tools is crucial for
facilitating the widespread adoption of data-driven methods
in MOF research and broadening their impact beyond
specialized experts to the wider material research community.

■ INSIGHTS FROM EARLY AI-DRIVEN
STRUCTURE−PROPERTY PREDICTIONS FOR
MOFS

We are now in an era where data science meets computer
simulations. Figure 2 shows the interplay within the overall AI
paradigm for the progress of MOF research. High-throughput
computational screening (HTCS) approaches based on
molecular simulations of MOFs have been important in
evaluating large numbers of MOFs (126,800 experimental
MOF structures are deposited in the Cambridge Structural
Database (CSD),40 and trillions of hypothetical MOF
structures have been created). In addition, these methods
provide molecular-level insights into materials’ properties by
complementing and directing the experimental studies.41

However, HTCS has become too slow and expensive to
explore this materials space effectively and efficiently.
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Data-driven approaches reduce the need to run molecular
simulations for every material, and integrating ML into
molecular simulations and experiments has significantly
accelerated the MOF discovery process in the last years.
However, most ML and molecular simulation studies have
primarily focused on gas adsorption under moderate to high-
pressure conditions. A limitation remains the lack of accuracy
in these approaches for more complex energy-related
applications, particularly those involving gas capture at low
traces, such as direct air capture (DAC) or adsorption of highly
volatile compounds. By applying innovative derivative-free
optimization methods such as Bayesian optimization42 and
multifidelity methods,43 and sophisticated techniques such as
new neural network (NN) architectures, ML can analyze vast
MOF databases to identify key structural patterns associated
with desirable properties, such as high gas adsorption,
selectivity, or thermal stability. For example, Liu et al.44

determined the ML hyperparameters via Bayesian optimization

and used a crystal graph convolutional NN algorithm to
virtually screen MOFs for toluene vapor adsorption. This
narrows down the candidates for experimental synthesis,
guiding researchers directly to promising compounds and
expediting the discovery process. Several reviews45−51

reflecting aspects of data acquisition, featurization, ML
model training, and applications have already been published.
Deep learning (DL),52 a subfield of ML based on NNs, has

revolutionized the AI field with its impressive results in
applications such as computer vision, natural language
processing and speech recognition. One of the most important
factors for the success of DL algorithms is the availability of
large data sets like ImageNet,53 since these algorithms are
notorious for being “data hungry”. With this in mind and
taking into account the development of large MOF data-
bases,54−61 the appearance of DL techniques within MOF
research should not be a surprise. DL algorithms enable
researchers to directly process text-, graph- and image-based

Figure 1. Schematic representation of data-driven methods and their usage in MOF research. Number of publications and their citations featuring
the terms “machine learning” and metal organic framework or “deep learning” and metal organic framework in their topics. Accessed: 2025−04−03
from Web of Science.
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representations of MOFs or even raw structural informa-
tion.62−64 A variety of DL workflows, based on multilayer
perceptrons,31,65−70 recurrent NNs (RNNs),68,71−73 graph
NNs (GNNs),57,74−80 convolutional NNs (CNNs)62,81,82 and
transformer-based NNs,83−86 have been developed and
successfully applied for predicting various properties of
MOFs: gas uptake,62,83,84,86,87 gas diffusivity,84 band gap,83,84

bulk modulus,65 stability metrics70 and synthesizability.71

Besides uncovering structure−property relationships, pre-
dictive DL models can also be applied for accelerating
expensive steps in computational workflows.74,79,87−90 For
example, modeling nonbonded interactions in Monte Carlo or
molecular dynamics simulations of gas adsorption/diffusion
requires accurate partial atomic charges for all MOF atoms.
For example, Raza et al.74 proposed a GNN that takes as input
a crystal graph�i.e., a set of nodes and edges, representing
atoms and bonds between atoms, respectively�and which
generates node-level predictions, corresponding to partial
charge predictions for MOF atoms while satisfying the charge
neutrality constraint. The GNN was trained with DFT (density
functional theory)-derived MOF partial point charges,
achieved high-fidelity partial charge assignment, and impor-
tantly, with orders of magnitude shorter runtime compared to
DFT calculations.
Other than predictive models which have been widely

applied for high-throughput screening, generative models such
as Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) are other classes of ML models that can
expedite the discovery of high-performing MOFs. Instead of
mapping from structure-to-property (as is the case of
predictive models), these models adopt an inverse de-
sign73,80,91 approach (i.e., property-to-structure), enabling the
targeted design of tailor-made materials.
The long-term vision is to combine these data-driven

predictions with real-time feedback loops and autonomous
laboratory systems. In the experimental space, DL could
integrate with robotic automation for MOF synthesis, enabling
fully autonomous laboratories where DL models not only
design new MOFs but also control robotic systems to
synthesize and test them.92,93 This would drastically accelerate
the pace of discovery. Additionally, robotic and automated
chemistry laboratories can produce vast amounts of data,
underscoring the need for effective learning methods to

process them. At this point, we note a key dilemma in MOF
research: the difficulty of automating experimental processes.
Many synthesis protocols lack reproducibility, often yielding
inconsistent results even when the same procedure is followed.
In addition, each research group employs specialized
experimental procedures, making integration into a commer-
cially available automated tool challenging. These compatibility
issues are not only coming from materials synthesis but also
from available software infrastructures. For example, in a
Nature Synthesis Q&A discussion,94 Prof. Andrew Cooper
highlighted that key barrier to automating material synthesis is
not the cost but rather specialized expertise required to
implement generalized experimental systems. For example, his
laboratory uses the Robot Operation System (ROS), yet
compatibility issues persist, as not all robotic platforms are
ROS-compatible. Additionally, challenges remain in standard-
izing software libraries and their interface programming,
further complicating widespread adoption. The flexible
automation concept95 may solve these experimental challenges
by dividing the workflows into individual tasks such as
synthesis, activation, stability testing, and measurement. This
task-oriented approach can introduce reconfigurable auto-
mated dynamic experiments.
From the materials synthesis perspective, reinforcement

learning (RL) adds another layer of precision by dynamically
optimizing synthesis parameters�including temperature,
solvent choice, and reaction time�to achieve higher yields,
enhanced crystallinity, and better phase purity. For example,
Yaghi’s team26 developed an integrated AI system to determine
the optimal conditions for the synthesis of MOFs and their
organic related materials, covalent organic frameworks
(COFs), for water harvesting in his laboratory. Microwave-
assisted methods required 4 days (6,235 min) to optimize one
compound from over 6 million variable combinations. This
adaptive optimization could minimize trial and error, especially
in challenging syntheses, and can unveil synthesis conditions
that may otherwise remain unexplored. In another example, a
web-based tool was developed to predict MOF synthesis
conditions using ML models.96 Users can upload the
crystallographic files of MOFs and then receive the synthesis
conditions of the corresponding MOFs, including synthesis
temperature, time, solvent, and additives. These studies
introduce a transformative approach in MOF synthesis,
moving from experience-driven trial and error toward a
systematic inverse design strategy.
The integration of AI tools significantly reduces operational

costs by minimizing labor hours, reagent consumption, and
equipment usage. To illustrate this, consider the optimization
of UiO-66 synthesis. In 2020, Taddei et al.97 performed 31
experiments to optimize the microwave synthesis conditions,
achieving a significant increase in space-time yield (STY) from
23 kg/m3·day to 2241 kg/m3·day. The production cost of 1 kg
of activated UiO-66, synthesized using dimethylformamide,
zirconium chloride, terephthalic acid, and hydrochloric acid,
has been reported as approximately 503.9 USD/kg.98 For 31
reactions, each yielding 360 mg of UiO-66, the total product
mass is 11.16 g, resulting in a material cost of 5.62 USD per
batch. The power consumption for these 31 experiments was
reported as 2438 W. Assuming a total experimental duration of
30 days and an electricity cost of 0.15 USD/kWh, the energy
cost totals 263.3 USD. If the experimental work is conducted
by 5 PhD students (each with an estimated salary of 2500
USD/month, totaling 2.5 full-time equivalents), the labor cost

Figure 2. Interplay within the overall AI paradigm for the progress of
MOF research.
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totals 6250 USD/month. Combining these factors, the total
estimated cost for this workflow is 6518.92 USD/month. To
reduce costs, AI-driven optimization was explored. By
employing AI tools (assumed cost: 2000 USD/month such
as subscription fees, computational resources, maintenance,
data storage, power consumption etc.) and requiring only 1
PhD student (0.5 full-time equivalent) to perform an
optimized synthesis (producing 360 mg per experiment), the
total cost is reduced to 3250.18 USD/month (including labor,
materials, and AI implementation). This represents an almost
50% reduction in overall cost compared to the conventional
approach. Furthermore, multiscale modeling�combining DL
models that operate at different scales (from atomic to
macroscopic)�could enable researchers to predict how MOFs
would behave in real-world conditions, aiding in their
deployment in industrial applications.99 The potential impact
is vast, with applications in CO2 capture, hydrogen storage,
water purification, and beyond�ultimately enabling a new era
of responsive, high-performance materials tailored to tackle
some of the world’s most pressing challenges.100

Figure 2 highlights the growing concerns about AI
potentially replacing human-centric jobs. While such concerns
are valid, it is important to recognize that disruptive
technologies have consistently brought both challenges and
opportunities. By focusing on collaboration and innovation,
scientists and society overall can harness the potential of AI for
great achievements. Ultimately, as data-sharing platforms

expand and interdisciplinary collaborations grow, the synergy
between AI and MOF research could revolutionize materials
science, enabling breakthroughs in clean energy storage,
environmental remediation, and beyond. The future of AI in
MOF research is not just about better predictions but about
unlocking the ability to design materials with tailored
properties on demand. Additionally, future research should
not only focus on beating state-of-the-art results but should
also provide practical and environmentally sustainable AI
solutions. Thus, new researchers are encouraged to report the
computational and carbon footprint101,102 of their proposed
approach in addition to standard performance metrics. We
believe that AI is a pivotal tool in accelerating the journey
toward novel MOFs and the recent breakthroughs are just the
tip of the iceberg.

■ FROM EARLY AI PREDICTIONS TO THE ERA OF
LARGE LANGUAGE MODELS

Large Language Models (LLMs) are potential game changers
within the rapidly expanding research space of AI. The
methodology of LLMs involves training NNs on vast amounts
of text data, enabling them to understand, generate, and reason
about human language. Figure 3 shows human-interpretable
LLMs for MOF research.
LLMs can be used in MOF research in several innovative

ways: (a) They can automate literature reviews by scanning
large data sets and extracting key insights from research papers,

Figure 3. Possible AI-human loop for MOF chemistry.
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making it easier for researchers to stay updated on the latest
developments. (b) LLMs can generate structured data from
textual descriptions, aiding in the discovery of new MOF
structures or optimizing synthesis methods. (c) Through
integration with ML models, LLMs can predict experimental
outcomes, propose new materials, and link disparate sources of
information, leading to interdisciplinary breakthroughs. (d)
Additionally, they can optimize experimental conditions by
analyzing previous experiments and suggesting new ap-
proaches, accelerating the discovery of MOFs with desirable
properties. Independent of these applications, LLMs hold
potential for research automation, such as drafting reports,
summarizing results, or hypothesizing new experiments based
on available data. Fine-tuned on MOF-specific data and
integrated with existing databases, LLMs can enhance
information retrieval and facilitate collaboration across differ-
ent fields, ultimately driving innovation and accelerating
progress in MOF research.
To bring them to a wider audience and use them in service

of more people, we need to identify the kind of tasks where
LLMs are superior: LLMs are particularly good at summa-
rization, sentiment analysis and text classification. For example,
LLMs can analyze vast databases of scientific publications to
identify trends and extract critical information on material
properties, synthesis methods, and experimental results. This
capability allows researchers to quickly gather comprehensive
insights without manually skimming through thousands of
papers. This would be the most obvious short-term adaptation
of LLMs directly to MOF research. Implementation with a
wider impact and a longer-term view would suggest the need to
create tools and methodologies to convert materials synthesis
and chemistry into a “language” and to teach the LLMs the
“grammar of chemistry”. The massive ML research effort of
recent years has already created a great portion of the
necessary tools, such as molecular representations, reaction
descriptors, retrosynthetic analysis, condition optimization and
a significant amount of data output.23 So, what would be the
steps of creating and converting an LLM for MOF topology
generation and synthesis as a “reasoning engine”?
There are emerging answers in the literature converging on

this fundamental question. One example is called ChatMOF,
created by Kang and Kim.7 ChatMOF can create MOFs with
user-desired properties from human cognition and predict their
properties. For example, ChatMOF can not only answer a text-
compatible input, but also generate a MOF structure with user-
defined properties. ChatMOF extracts the desired MOF data
using a table-search operation from different MOF databases
such as CoREMOF,56 the CSD MOF subset103 or QMOF57

and also uses MOFkey104 and DigiMOF58 databases to
provide topology-based and synthesis information. MOF-
Transformer84 is used as a toolkit to predict the properties
of MOFs based on an ML model. Here, it is important to
clarify that ChatMOF leverages language to utilize knowledge
already curated in its data set, which differs from actual
reasoning on a chemical task or question�a capability that
remains a challenge for AI.
To dive into the discussion for adapting a LLM for MOF

topology generation, the first step is to create a way of
generating chemical word embedding and tokenization.
Chemical word embedding is a database structure which
stores chemical words (ligands and metals in terms of MOFs)
according to some proximity rules and locates similar words
nearby and dissimilar words far apart. What makes two ligands

similar in terms of reactivity, MOF synthesis or output
topology, i.e., in their “meaning”? That seems like an open
question waiting for a rigorous answer.
This issue was sorted out in Natural Language Processing

(NLP) research by word2vec,105 an analogous methodology
and development for MOFs (maybe named: MOF2vec) seem
desirable. Additionally, a relevant methodology for tokeniza-
tion is needed for a MOF reasoning engine. In NLP,
tokenizing a given text word-wise overloads the vocabulary
dictionary (a sequence assigned to each word). On the other
hand, tokenizing a given text character-wise results in a very
lightweight vocabulary dictionary (a number assigned to each
letter and the list has only 26 items in English). But this time,
the context within words is lost. Therefore, in LLM
applications, tokenization is a well-tuned process. The question
we need to answer is how to fragment a given MOF structure
to generate a “sub-word” dictionary that would enable us to
speak the language of MOF chemistry.
Word embeddings of chemical elements are used to

represent the stoichiometric formula of MOFs, and the chosen
embeddings are derived from unsupervised learning on raw
text (i.e., natural language texts) to capture implicit knowledge
from the corpus (a large and structured collection of texts in a
natural language). To construct features based on the
composition of each MOF structure (almost 200 embedding
dimensions), the ElementProperty featurizer in matminer106 is
utilized. This model facilitates material design by establishing a
connection between property predictions and crystal structure
to further develop high-performance materials for gas
adsorption applications. Geometric entities can be used to
predict some chemical properties of MOFs, but given the large
variety of MOFs, how can one create a chemistry-based design
using a MOF language? We already have some tools and the
vision to harness LLMs as a “chemical grammar processor”.
Although the road to this goal might not be direct, each new
tool brings us closer to the rational design of new materials.
The future perspective of LLMs in MOF research holds

immense potential to revolutionize how we design, discover,
understand, and, more importantly, think about these
materials. As LLMs become more sophisticated and fine-
tuned for specialized scientific domains, they will likely evolve
into essential tools for automating much of the research
process. In the coming years, we could see LLMs used for real-
time hypothesis generation, where researchers can interact
with the model to brainstorm new ideas, identify unexplored
research avenues, or propose novel MOF structures with
specific properties, such as enhanced gas adsorption or
catalytic efficiency. This will significantly shorten the
discovery-to-deployment cycle for new materials.
Moreover, as LLMs become better at integrating vast and

diverse data sets, including experimental data, computational
models, and scientific literature, they could act as highly
intelligent systems capable of predicting material behaviors
under various conditions. These models may go beyond
summarizing existing research to synthesize new knowledge by
connecting dots across different scientific domains. This
interdisciplinary approach will likely unlock new applications
for MOFs in areas like renewable energy, environmental
remediation, and drug delivery, as LLMs provide insights that
human researchers might overlook.
Looking further ahead, LLMs combined with other AI

technologies could enable fully autonomous research pipelines.
In these systems, LLMs would not only generate hypotheses
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but also design and execute simulations, analyze results, and
even control robotic systems to perform physical experiments.
This could lead to the discovery of completely new classes of
materials with tailored properties, optimized for specific
industrial or environmental applications. Since industrially
relevant conditions are critical for assessing the environmental
impact of MOF products,107 AI can help explore the infinite
number of scenarios such as varying reaction conditions,
solvent recovery or waste management processes. Ultimately,
LLMs could transform MOF research by making it faster, more
efficient, and more innovative, pushing the boundaries of what
is currently achievable in materials science.
In the past years, the many potential applications and

varieties of MOFs have truly come to the fore. One reason for
this blossoming of the field is the development of LLMs and
generative AI tools that can support scientists in searching the
reaction space for this class of materials. What these efforts
make clear is that digital standardization of terminology,
structural representation, and nomenclature is essential for
harnessing the full capabilities of digital tools. Having a
standardized nomenclature in the MOF community is
important for ensuring interoperability between data manage-
ment and software systems. These backward-compatible
standards are only the first step in creating a common
language. As the chemistry community, we must also ensure
that there is universal dissemination and uptake. This will
enable us all to speak the language of MOFs and the language
of chemistry!
Learning algorithms have been proposing solutions not only

for data collection, interpretation, and structuring, but also for
a long-standing problem of the molecular modeling commun-
ity called “scale hierarchy”. Scale hierarchy problems refer to
the difficulty of integrating results from the electronic-level
simulation to the atomistic level, from the atomistic level to the
mesoscale, and from the mesoscale to the continuum level. To
overcome this difficulty and plug the gap between the

“electronic level to the atomic level”, physical models were
commonly used and had limitations. Now, ML-based
potentials open up completely new possibilities to tackle this
problem.

■ ML POTENTIALS: A NEW FRONTIER IN
ATOMIC-SCALE SIMULATIONS OF MOFS

Interatomic potentials are critical in understanding atomic
interactions and predicting the properties of materials at the
atomic scale. Traditional quantum mechanical-based methods
such as ab initio methodologies have delivered essential
insights, however they are limited in terms of time and length
scales. Alternatively, empirical or semiempirical models, such
as Lennard-Jones or embedded atom potentials, have been
extensively used in the past two decades to describe the intra-
and intermolecular interactions in MOFs. However, these
classical potentials often struggle to balance accuracy,
computational burden, and generalizability across diverse
chemical MOF systems. Machine learning potentials (MLPs)
represent a new avenue for capturing the most complex
interactions with near quantum mechanical-accuracy but at a
fraction of computational cost. This has enabled studying
MOF materials with large atomic-scale simulations that were
unfeasible at the quantum mechanical level, from exploring
phase transitions to predicting their mechanical, thermal and
adsorption properties among others. Unlike classical potentials,
MLPs are trained on high-quality quantum mechanical data,
often derived from DFT or other advanced ab initio methods,
assembling a large data set of atomic configurations and
associated energies/forces of the explored MOF systems.108,109

As illustrated in Figure 4, by employing ML algorithms ranging
from NNs to Gaussian regression or kernel methods to map
atomic positions to the potential energy surface, these MLP
models can capture the intricate atomic interactions, including
bond breaking and formation, with unprecedented precision.
By continuously learning from larger data sets and adapting to

Figure 4. Schematic diagram of the development of MLPs based on quantum mechanical data sets alongside typical applications of MLPs to the
MOF field.
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various atomic environments, MLPs show a high adaptability
because they can be improved by incorporating new data. This
makes them highly versatile for simulating MOFs with different
compositions, structures, and environmental conditions. MLPs
can be easily applied to more complex systems, something that
has been a limitation of traditional models. Thus, disordered or
amorphous phases can be modeled, providing unprecedented
insight into the flexible and dynamic nature of materials.110,111

In recent years, the use of MLPs in the field of MOFs has
witnessed a profound and rapid expansion, improving the
exploration of the physical properties of this class of materials
by unlocking deeper insights. Decisively, a precise description
of the structural flexibility of MOFs via MLPs offers a unique
opportunity to explore how these hybrid frameworks respond
to varying temperature and pressure. Some typical illustrations
include the exploration of the zeolitic imidazolate frameworks
(ZIFs),112 MOF-5,113 CALF-20,114 and 2D MOFs.115 For
example, MLP-based molecular dynamics simulations revealed
unique thermodynamic and mechanical properties of CALF-20
at finite temperature, e.g., negative area compressibility,
negative thermal expansion and unusual strain-softening
behaviors.7 Another advantage of MLPs is the ability to
simulate large systems at experimentally relevant scales. Unlike
DFT calculations, which are limited to small systems and short
time scales, a recent study demonstrated that a high-quality
MLP trained for a 2D MOF can be used to simulate
experimental-size MOF membranes (up to 28.2 × 28.2 nm2)
without losing computational accuracy.115 Thus, the behavior
of MOFs can be studied under conditions closer to practical
applications.
MLPs have also been applied recently to predict the gas

adsorption properties of MOFs, e.g. Al-soc-MOF-1d and ZIF-
8.87,116 with high precision. Here, one of the most critical
challenges is to accurately describe the host/guest interactions.
In classical simulations, the van der Waals interactions,
typically modeled by Lennard-Jones and Buckingham
potentials with parameters taken from generic force fields,
e.g. UFF117 and DREIDING,118 are augmented by an
electrostatic term to account for the interactions between
charged MOF atoms. However, there are many examples
where force fields must be reparameterized or derived from
quantum-mechanical calculations due to a poor agreement
with experiments, especially when the MOF framework
contains open metal sites (OMSs).119,120 Decisively, MLPs
can accurately model not only the most complex MOF/guest
interactions but also the guest-induced dynamics of the MOF
framework which is most often overlooked in classical
simulations with the use of rigid-lattice models. Typically, a
MLP trained on a relatively large data set of MOF/guest
configurations generated by ab initio molecular dynamics was
demonstrated to accurately capture the H2/Al-soc-MOF-1d
interactions as well as the H2-triggered MOF scaffold dynamics
leading to a predicted adsorption isotherm at 77 K via grand
Canonical Monte Carlo simulations in excellent agreement
with the experimental data.87 This strategy could be
generalized to provide a more accurate and efficient assessment
of the adsorption behavior of the most complex MOFs.
Typically, an MLP is mostly trained on a single MOF phase

and therefore struggles with transferability across different
chemical and structural environments. This would lead to
inaccurate predictions for other MOFs. The breakthrough in
this field would therefore be the development of universal
MLPs to model the vast structural diversity of MOFs with

quantum mechanical-level accuracy. The integration of such
highly accurate MLPs with HTCS tools would enable
researchers to anticipate a myriad of MOF properties in real-
time and with unprecedented precision. In this context, the
ongoing development of universal MLPs, e.g., CHGNet,121

M3GNet,122 MACE,123 holds immense promise. Another key
evolution lies in the development of self-improving MLPs,
where models continuously learn and adapt from new data,
expanding their predictive power across an ever-wider range of
MOFs. This could drastically accelerate the discovery of novel
MOFs for next-generation applications by exploring vast MOF
chemical/structure spaces.
To be able to use all these fascinating methods, we initially

need high-quality data. This is a tedious problem since the
collection and precollection are still not very well-defined to
reach “high-quality” data. That is why we would like to insist
again that the major problem here boils down to, inspired by
Sherlock Holmes, the famous fictional detective created by Sir
Arthur Conan Doyle:124Data, data, data! I cannot make bricks
without clay. In this context, we would like to identify some key
entry barriers for data-centric design as well as suggest some
systematic precollection and collection methods to reach high-
quality data for MOF research.

■ LOWERING THE BARRIER TO ENTRY FOR
DATA-BASED MATERIALS DESIGN

As highlighted above, we are witnessing a rapid explosion of
the number of proposed scientific methods based on data for
the discovery of novel materials, the identification of known
materials with specific desirable properties, the optimization of
chemical engineering processes and, more broadly speaking,
multiobjective optimization and decision making in the field of
applied materials sciences. Accompanying this fast pace of
theoretical development, there is an important demand from
the wider research community � and not only experts in data
science � to be able to use these methods that they hear so
much about (both in scientific publications and in the general
press), with legitimate questions such as “If AI and/or ML is
going to change the way of chemistry, how can I leverage it in my
own research projects?”. We see in the field a growing
recognition of the need to democratize access to data �
and beyond data, to models.
The drive to lower the barrier to entry for the use of data-

based methods is 3-fold, in our view: (i) it concerns the access
to data, (ii) the access to models, (iii) and their ease of use to
the wider community. All three aspects are necessary to drive
the adoption of data-based methods in the materials science
research community, beyond data scientists and specialists in
theoretical and numerical methods.
The first aspect that we highlight is the sharing of data, to

maximize the reuse of research data. This need is driven not
only by research ethos but also by an increased recognition
that there is a clear economic cost associated with dark data or
unshared data − which was costed at €10.2bn per year at the
scale of the EU economy.125 We note again that probably the
best-known set of guiding principles for sharing scientific data
in the modern age are the FAIR principles.126 The FAIR data
standards are Findability, Accessibility, Interoperability, and
Reusability. While many research groups nowadays make
efforts to make their data findable and accessible, we
emphasize that interoperability and reusability are sometimes
more difficult to achieve, especially in a field where the nature
of the data (and the materials that are described) are incredibly
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diverse. However, interoperability and reusability are of
absolutely fundamental importance. Progress in this area will
require work to improve the metadata associated with the data
itself, their representation and standardization, as well as the
use of shared, accessible vocabularies and ontologies. This
touches on the core issue of “What defines a material?”, a
question that different research communities (and families or
classes of materials) would have different answers to.
The second aspect necessary to democratize data-based

methods is that of access to models, i.e., to the trained ML
models, to the code that was used to train them, and to the
code that is necessary to deploy them. This is crucially
important for the reproducibility of scientific research in our
field, and a cornerstone of the scientific method. Without full
sharing of models, it is impossible (for groups other than the
original authors) to benchmark published methods on new
data, or to compare the merits of different algorithms � and
therefore an obstacle on the road to progress. This aspect is
also of vital importance to bolstering accountability in AI
research, something that is necessary to build the trust of the
broader community. Furthermore, it is also linked, to some
level, to a necessary homogenization of the reporting standards
for new data-based studies in our field. We hope that in the
future the community in materials sciences and chemistry will
propose and enact coherent reporting requirements. We note
that such efforts have been proposed before, either in the form
of best practices by experts in the field,127 or through funder
mandates (similar to open access mandates).128

The third prong of this push toward democratization of
data-based methods may appear, on first view, as less
“scientific” or technological than the previous two. However,
we argue that there is an important demand to make published
data and models easier to use for the wider community,
through initiatives like centralized databases with online
portals, user-friendly data visualization tools, training pro-
grams, and data analytics programs. For example, while many
MOF databases have been proposed, they are often hosted on
different platforms (some on Zenodo, some on GitHub, some
on specific websites, etc.). One example of the push toward
unification (and therefore, greater interoperability) is that of
the Materials Project web portal.129 The Materials Project
portal is an open web-based resource of computed properties
of materials. It is centralized but it also allows for the upload of
user-created data in the form of external “contributions”,
allowing better sharing of data through a common platform
with a well-defined user interface. Future efforts should be
encouraged for such platforms, extending to a wider range of
chemical space (beyond crystalline materials, for example) and
suitably integrating both experimental and computational data
of both physical and chemical nature, further enabling
interdisciplinary collaborations. Similarly, published models
can be integrated into such online platforms, making it easy for
nonexperts to perform simple property prediction (or other
ML tasks) simply by uploading one or several structure files.
This would allow large-scale screening of both experimental
and hypothetical structures to identify promising candidates by
pushing the Pareto front for specific applications, in a
multiobjective optimization strategy � possibly, in the long
term, including questions that are deemed too difficult at the
moment, such as generative models for materials design and
realistic estimation of synthesizability (or feasibility) of
hypothetical structures.

This whole task is an aspirational but necessary attempt to
democratize the landscape of data and AI methods for the new
generation materials development endeavor. How can we
adapt all these suggestions and guiding principles into a vibrant
ecosystem of MOFs, COFs, and similar materials?

■ CREATING AN INTEGRATED MATERIAL
DATABASE

Responding to this challenge, we suggest to integrate existing
material databases into an overarching, curated platform and
diversifying its coverage through three distinct steps. This
suggestion is based on recent evaluations of existing data-
bases�both experimental and computational in nature�that
uncovered important shortcomings, as discussed by Gibaldi et
al.130 and De Vos et al.,131 as well as on personal experiences of
developing and using these databases.

Step 1. Data Collection and Integration. In the past
decade, a wide variety of MOF and COF databases based on
experimental structures,56−58,56−58,132−134 hypothetical struc-
tures,54,55,131,135−137 or a combination thereof59 have been
developed, often as a starting point for high-throughput
screening studies. These MOF and COF structures, once
properly represented using, e.g., the MOFid format104 or the
Weisfeiler-Lehman kernel in the graph2vec algorithm,138 form
a promising starting point to establish the integrated database
platform envisioned here. In this platform, the tokenized
reticular structures, properties reported in the original
database, and, additionally, properties such as pore size
distribution,139 persistence diagrams,140 and revised autocorre-
lation (RAC) descriptors141 that are calculated separately from
the original database, would form individual ‘documents’, as in
the MOF recommendation system established by Zhang et
al.142 Such standardized document-structured genomes140

ensure that the database can afterward be leveraged to
recommend candidate materials for specific applications
based on the similarity of their material embedding vectors
with embedding vectors of known well-performing materials
generated through a Doc2Vec model. In addition, once the
materials are tokenized, this database can be hugely expanded
and enriched through text-mining the existing MOF and COF
literature, similar to the DigiMOF database.58 This algorithm
could cover new literature continuously, ensuring the platform
remains up-to-date.58 For both the original data points and
those obtained by text mining, sufficient metadata must be
present, including the source of the data, whether it was
experimentally verified, computationally calculated, or pre-
dicted by a model, and the context in which the property was
reported.141 This would help adhere to the FAIR principles
and identify and correct the “fuzzy” context omnipresent in
materials science.142

Step 2. Data Correction and Curation. At this point,
duplicate structures may be present in our database, which
would bias subsequent model training.143 The database would
likely contain errors, either because they were present in the
literature, or because they were introduced during text mining.
Recently, MOSAEC-DB (Metal Oxidation State Automated
Error Checker Database),130 a database containing over
124,000 MOF structures, was shared within the MOF
community to address structural problems arising from
computational processing, such as those caused by solvent
removal or unreasonable assigned oxidation states. These
contributions are highly appreciated, as they establish a unified
platform to support MOF research. While it is straightforward
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to remove (near-)duplicates based on their overlapping
embedding vectors, correcting and enriching data requires
more attention. A possible path forward here is based on the
observation that the collective knowledge in large databases
can help correct mistakes in individual entries, as demonstrated
by Jablonka et al.144 To do so, various competing ML models
would be trained and tested on our database’s existing
{material, property} pairs and then used to predict these
properties for the whole database. In most cases, this is new
information that enriches the database, while a limited amount
of material predictions can be compared with actual
experimental or simulation outcomes. This step is vital to
test the accuracy of the ML models and to help identify
possible errors in the database, as in ref.144, especially when the
predictions of multiple ML models agree with one another. In
cases where these models disagree, domain experts would still
need to identify the most likely result.25

Step 3. Data Diversification. Most hypothetical databases
are biased due to the limited amount of building blocks and
topologies to generate hypothetical structures, while both
literature studies and experimental databases tend to be
skewed toward easy-to-synthesize materials.131,141 To ensure
our platform is sufficiently diverse and can be adopted to
identify promising materials beyond the limited chemical space
explored until now,143,145 it is essential to assess its variety,
balance, and disparity in terms of the properties calculated in
Step 1.141 By identifying unexplored and weakly explored
regions in chemical space, hypothetical MOF and COF
structures could be generated through, e.g., LLM-based genetic
algorithms targeting these regions, as demonstrated re-
cently.7,23,146,147 Besides the excellent integration between
LLMs and genetic algorithms for this inverse design
task,7,23,146,147 this also allows for the efficient exploration of
the structure space of crystalline materials by varying the
temperature in the final softmax layer.23,148 Such hypothetical
structures can be straightforwardly generated using the
reticular principle by extracting and recombining building
blocks, as demonstrated before,145,147 paying specific attention
to defective and disordered structures, given their profound
impact on the resulting material properties.

■ CONCLUSIONS
The 2024 Nobel Prizes in Physics and Chemistry both
celebrated groundbreaking advancements in AI, physics,
chemistry, and computational methods that deepen our
understanding of complex structures. If we turn to MOF
chemistry, the integration of ML, DL, and LLM has shown
remarkable potential in advancing material research. By
accelerating the discovery process, predicting material proper-
ties, and enabling efficient data analysis, these tools address
complex challenges in MOF design and optimization. The use
of ML and DL algorithms can significantly reduce experimental
time and resource costs, while LLMs support researchers by
quickly summarizing relevant literature, hypothesizing new
MOF structures, and even generating new pathways for
synthesis. Together, these approaches are making MOF
research more vibrant, insightful and data-driven.
Looking ahead, the application of ML, DL, and LLMs in

MOF research is expected to expand significantly. Figure 5
summarizes the extraordinary impetus of AI for new materials
development in the field of porous materials, specifically
MOFs. Future efforts will likely focus on creating more
specialized models tailored for complex MOF systems,

integrating multimodal data for enhanced predictive capa-
bilities, and improving model interpretability to deepen our
understanding of MOF behavior at the atomic and molecular
levels. As these tools become increasingly accessible and
sophisticated, they may eventually support real-time, AI-driven
experimental design, fostering an era where MOF discovery
and application reach unprecedented heights. This synergy
between AI and materials science promises to catalyze
transformative advancements across fields such as energy
storage, catalysis, and environmental remediation by using
MOFs.
There is still much room for exploring the vast chemical

spaces of materials and their flexible/stable configurations.
Predictive modeling remains in its infancy for applications like
healthcare and energy storage. Integrating AI with automated
MOF synthesis for scale-up technologies, especially using
green chemistry principles can enable tailored solutions, such
as high-performance batteries or personalized cancer treat-
ments. These are only a few examples, and the possibilities are
endless.
Overall, with the increasing importance of data-driven

decision making and the proliferation of (AI-driven) chatbots,
there is a growing recognition of the need to democratize
access to data. The MOF community should find ways to
remove the barrier to data access and use by providing user-
friendly databases, data visualization tools, training programs,
and data analytics programs. Cross-functional collaboration
should be encouraged by supporting data-driven initiatives.
These provide vital goalposts to be reached in the area of
material design with AI.
We believe that with the potential of human creativity and

the power of experimental design and modeling tools, the sky
is the limit!
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