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Adsorption deformation of microporous
composites

François-Xavier Coudert,*a Alain H. Fuchsa and Alexander V. Neimark*b

We study here the behavior of flexible adsorbent materials, or soft

porous crystals, when used in practical applications as nanostruc-

tured composites such as core–shell particles or mixed matrix

membranes. Based on simple models and the well-established laws

of elasticity, we demonstrate how the presence of a binder results

in an attenuation of the adsorption-induced stress and defor-

mation. In the case where the adsorbent undergoes adsorption-

induced structural transitions, such as the gate opening pheno-

menon occurring in some metal–organic frameworks, we show that

the presence of the binder will result in shifts of the adsorption-

induced transition pressures.

The discovery of soft porous crystals1,2 and their potential use
for adsorption separations,3,4 catalysis,5 drug delivery,6

sensing,7 and more generally as functional molecular
materials8 has triggered within last decade an explosion in
experimental, theoretical, and modeling studies of the
phenomenon of stimuli-responsive framework materials9 in
general, and of the phenomenon of adsorption-induced defor-
mation in particular.7,10–12 Guest molecules adsorbed in nano-
scale pores exert significant stress, of the order of
gigapascals,13,14 which causes deformation15–17 and in some
case morphological transformations in the host solid struc-
ture.18 Most prominent are gate opening and breathing tran-
sitions, which have been explored in great detail by using
in situ XRD scattering drawing on a variety of metal–organic
framework (MOF) materials.10,19,20 Microscopic mechanisms
of MOF flexibility have been examined by detailed first prin-
ciples and atomistic molecular dynamic and Monte Carlo
simulations performed on the crystal cell level.21–25 A rigorous
thermodynamic approach11 has been proposed to predict the

adsorption stress from adsorption isotherms.26 However,
these studies are limited to single adsorbent particles, while
the vast majority of practical applications require the use of
composite materials,27 such as micrometer size adsorbent
particles embedded into a permeable matrix28–30 or thin films
anchored on a support.31,32 Although composite MOF
materials have been studied from the point of view of adsorp-
tion and gas separation, such as e.g. MOFs coated with meso-
porous silica,33 there has been so far no specific study
focused on flexibility, which is still a completely open
question.

In this letter, we explore the flexibility of composite
materials formed by a soft porous crystal and a non-adsorbing
matrix. In particular, we study the extent to which the elastic
properties of the non-adsorbing matrix affect the adsorption-
induced deformation of the adsorbent particles and the com-
posite as a whole. Using a simple yet instructive spherical
core–shell model, we find that adsorption deformation in com-
posite is reduced compared to unconfined particles and the
magnitude of this effect is determined by the both elastic
moduli of the matrix and the morphology of the nanostruc-
tured composite. The reduction of adsorption deformation
leads to the shift of the positions of morphological transform-
ations, which can be even suppressed due to matrix rigidity.
These conclusions have important implications on the feasi-
bility assessment of the potential applications, which are
based on the effects of adsorbent flexibility. For example,
widening the hysteresis loops in adsorption–desorption behav-
ior can improve the amount of mechanical energy stored in a
high-pressure liquid intrusion.23 Tuning the flexibility of the
framework will also impact the heat released during the tran-
sition, a key property for adsorption-based separation
processes.34

As a model system, let us consider a composite spherical
particle made of an adsorbing core of radius R1 (in our case,
a particle of soft porous crystal) and non-adsorbing elastic
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shell of external radius R2. Both adsorbent and matrix
materials are assumed isotropic. The elastic properties of the
composite are characterized by the volumetric modulus Ka of
the adsorbent, whose deformation is considered uniform,
and by the Young modulus E and Poisson’s ratio ν of the
matrix. Under the action of adsorption-induced stress σa, the
adsorbent core is deformed uniformly with linearly progres-
sing radial displacement ur and constant radial strain urr
given by

ur ¼ σa � P1
3Ka

r; urr ¼ σa � P1
3Ka

at r , R1 ð1Þ

where r is radial coordinate.35 The external pressure P1 acting
on the core–shell boundary r = R1 is unknown and is deter-
mined from the solution of the classical Lamé problem of the
deformation of the outer spherical shell under action of
internal P1 and external P2 pressures.

35 The general solution of
the Lamé problem implies that in the shell, the radial displace-
ment ur, strain urr, and stress σrr are given by the following
equations:

ur ¼ ar þ b=r2; urr ¼ a� 2b=r3; σrr ¼ E
1� 2ν

a�
2E

1þ ν
b

r3
; at R1 , r , R2

ð2Þ

The constants a and b are determined from the boundary
conditions,

σrrðR1Þ ¼ �P1 ð3Þ

σrrðR2Þ ¼ �P2; ð4Þ
as

a ¼ P1R1
3 � P2R2

3

R2
3 � R1

3

1� 2ν
E

¼ gðP1 � 1� g�1� �
P2Þ=3K ð5Þ

b ¼ R1
3R2

3ðP1 � P2Þ
R2

3 � R1
3

1þ ν

2E
¼ 1

4μ
gR2

3ðP1 � P2Þ ð6Þ

The volumetric K and shear μ moduli are used in the right-
hand side of eqn (5) and (6) instead of Young’s modulus E and
Poisson’s ratio ν, to which they are related in an isotropic
elastic medium by:

K ¼ E
3ð1� 2νÞ ; μ ¼ E

2ð1þ νÞ ð7Þ

Note that the composite morphology is characterized by the
ratio g of the adsorbent and matrix volumes,

g ¼ R1
3

R2
3 � R1

3 ð8Þ

The unknown pressure P1 is determined from the third
boundary condition of equality of the displacements in the
core and in the shell at r = R1, namely:

urðR1Þ ¼ ðσa � P1ÞR1=3Ka ¼ aR1 þ b=R1
2 ð9Þ

Combining condition (9) with (5) and (6) one arrives at a
linear equation for the boundary pressure P1, which solution gives:

P1 ¼
σa þ 3ð1þ gÞ

4
μ� 1� g

K

� �
KaP2

1þ Ka
g
K
þ 3ð1þ gÞ

4
μ

� � ð10Þ

As such, the sought radial strain in the adsorbent core is
given as

urr ¼ ðσa � P1Þ=3Ka ¼ σa
3Ka

� σa=3Ka þ ð1� gÞð1=4μ� 1=3KÞP2
1þ Kaðg=K þ 3ð1� gÞ=4μÞ

ð11Þ

Eqn (11) shows that the adsorption-induced strain σa is
reduced by the elastic confinement, since the second term on
the right-hand side is guaranteed to be negative. The extent of
the lowering or “damping” of the deformation upon adsorp-
tion depends on both the geometrical characteristics of the
composite material (through the ratio g) and the mechanical
properties of the elastic shell (moduli K and µ). It should be
noted that the volumetric strain ε, which is the quantity
involved in thermodynamic descriptions and models of
adsorption deformation, is equal to three times the radial
strain urr, ε = 3urr. As such, eqn (11) can be rewritten in terms
of the volumetric strain ε as a function of the adsorption stress
σa and external pressure, P2 = Pext:

ε ¼ σa
Ka

� σa=Ka þ ð1� gÞð1=4μ� 1=3KÞPext
1þ Kaðg=3K þ ð1� gÞ=4μÞ ð12Þ

We will now consider specific cases, schematized in Fig. 1,
that are relevant for practical applications of composite
materials containing soft porous crystals.

Let us first consider an unconfined adsorbent under exter-
nal pressure Pext. This case corresponds to P2 = Pext and g → ∞
that reduces to the standard equation

ε ¼ ðσa � PextÞ=Ka ð13Þ
This is the equation used in thermo-mechanical models of

adsorption-induced deformation of soft porous crystals when
the pure MOF is considered.26 In the absence of external
mechanical pressure (Pext = 0), it further reduces to the simple
Hooke’s law ε = σa/Ka, which will in the following serve as our
baseline reflecting the behavior of flexible MOFs in the
absence of confining phase.

In the case of an adsorbent particle in infinite elastic
matrix, the volume of the exterior matrix is much larger than
that of the crystal. It is a very simplified version of real compo-
site materials used in practical applications, e.g. such as a
mixed matrix membrane with particles of soft porous crystal
embedded in a surrounding polymer phase.

This case corresponds to Pext = 0 and g → 0. The volumetric
strain from eqn (12) is now equal to

ε ¼ σa
Ka

1� 1
1þ Ka=4μ

� �
¼ σa

Ka
� 1
1þ 4μ=Ka

,
σa
Ka

ð14Þ
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From this equation, we see that the deformation of the
material is reduced, by a constant factor that depends on the
relative elasticity of the adsorbent and matrix: the stiffer it is,
the more it prevents the core particle from changing its
volume. The adsorption-induced stress is dampened, or dimin-

ished, by a factor of
1

1þ 4μ=Ka
.

Another case of interest is that of core–shell nanoparticles,
i.e. the general case in which g depends on the shell size but
Pext = 0. This geometry of a nanoparticle of MOF crystal coated
(or surrounded) by a non-adsorbing matrix is particularly rele-
vant for applications, where the shell could be used to
reinforce the chemical and mechanical stability of the MOF
core. For that case, the adsorption-induced strain is:

ε ¼ σa
Ka

1� 1

1þ Ka
g
3K

þ ð1� gÞ=4μ
� �

0
B@

1
CA ,

σa
Ka

ð15Þ

Like in the previous case, the strain is reduced compared to
the unconfined particle, but this time the factor depends on
both the bulk (volumetric) K and shear µ moduli of the shell
matrix, as well as the geometry (through g). For the specific
case of a thin shell of thickness h (a coating of the MOF), this
factor equals g = R1/3h.

Finally, now turn to a composite material (soft porous
crystal core and elastic shell) jacketed by a non-deformable
outer container. In practice, this represents a composite that is
surrounded by a much stiffer material. This case thus corre-

sponds to different boundary conditions, because the outer
stress P2 is undetermined, but the volume is conserved leading
to a condition of zero displacement at r = R2, ur(R2) = 0. Solu-
tion of the Lamé equations with this boundary condition gives
the following equation for the volumetric strain (see math-
ematical derivation in Appendix):

ε ¼ σa � P1
Ka

¼ σa
Ka

� 1

1þ gK
Ka

þ 4μ 1þ gð Þ
3Ka

,
σa
Ka

ð16Þ

Hence, despite the different nature of the boundary con-
ditions, the end result is similar: additional constraints on the
soft porous crystals cause further reduction in volumetric strain.

Finally, let us highlight the effect of the confinement-
induced dampening of the adsorption deformation drawing on
the example of a stimuli-responsive MOF. We consider here a
MOF crystal undergoing a gate opening phenomenon, i.e. the
adsorption-driven opening from a nonporous closed structure
(or structure of lower pore volume) into a microporous open
phase (or structure of large pore volume). Following the thermo-
mechanical view (or “stress model”) of adsorption-induced
structural transitions in soft porous crystals,26 gate opening
occurs upon adsorption when the outwards stress exerted by
the guest molecules reaches a certain critical threshold, the
limit of stability of this closed phase. Symmetrically, upon deso-
rption the transition occurs when the adsorption-induced stress
falls below another threshold, which is the limit of stability of
the open phase. This mechanism results in step-wise adsorp-
tion–desorption isotherms forming a hysteresis loop exempli-
fied in Fig. 2 (solid lines), taking for the adsorption stress
profile a Langmuirian equation, as derived in ref. 26.

To illustrate the impact of the external confinement on the
gate-opening phenomenon, we consider a crystal in infinite
elastic matrix. The adsorption stress isotherm (stress vs. gas
pressure) and the respective adsorption isotherm are plotted
by dashed lines in Fig. 2. One can see that the changes in the
adsorption stress lead to a shift in the position of the struc-
tural transition. In the example given in Fig. 2, this phenom-
enon leads to a widening of the hysteresis loop, with gate
opening occurring at a higher pressure and gate closing at a
lower pressure. It could also be possible, depending on the
nature and shape of the adsorption stress profiles, to observe a
reverse effect—e.g., with gate closing at a higher pressure than
in the unconfined soft porous crystal, or gate opening at lower
pressure. Similar conclusions can be made for the case of
core–shell particles.

In conclusion, we have shown that the elastic confinement
present in composite materials affects adsorption-induced
deformation of soft porous crystals. This effect is of particular
interest, since flexible adsorbents in practical applications are
used as composites such as core–shell particles or mixed
matrix membranes. By deriving the mechanical equations for
the deformation of model composite materials, we show that
this effect depends on the geometric nature of the composite
as well as on the respective elastic properties of the adsorbent
(through its bulk modulus) and the elastic matrix (through its

Fig. 1 (a) Model system representing a composite material. (b) Three
special cases of the model system: case 1, unconfined spherical adsor-
bent particle; case 2, adsorbent in infinite elastic matrix; case 3, spheri-
cal core–shell particle.
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bulk and shear moduli). In all cases, however, the presence of
the binder results in an attenuation of the adsorption-induced
deformation. In the case where the adsorbent undergoes adsorp-
tion-induced structural transitions, such as the gate opening
phenomenon occurring in metal–organic frameworks, the pres-
ence of a binder around the adsorbent can result in shifts of the
transition pressures. In future works, it will be of interest to
expand the study from the radial stress to the tangential stress
at the crystal–binder interface. This tangential stress cannot
exceed the limit of material integrity of the elastic medium that
determines the conditions, at which the nanostructured compo-
site “breaks down”, i.e. contact between the soft porous crystal
and the surrounding elastic medium is lost. Noteworthy the ana-
lysis performed in this work is limited to isotropic crystals; its
extension to anisotropic structures is highly desired yet involves
a much more elaborated treatment of adsorption deformation.
We hope that this first theoretical treatment of the open ques-
tion of flexibility of MOF-based nanocomposite materials will
spur experimental research in that direction.

Appendix. Derivation of adsorption-
induced deformation in a jacketed
composite

Let us consider a composite material jacketed by a non-deform-
able outer container. The boundary condition in this case is

urðR2Þ ¼ 0 ð17Þ

We start from the general solution to the Lamé problem in
the shell region as given by eqn (2), which we re-write as

ur ¼ ar þ b=r 2; urr ¼ a� 2b=r 3; σrr ¼ 3Ka � 4μb=r 3; at R1 < r < R2

ð18Þ
The boundary conditions are

3Ka � 4μb=R3
1 ¼ �P1

aR2 þ b
R2

2 ¼ 0; or b ¼ �R2
3a

aþ b=R1
3 ¼ ðσa � P1Þ=3Ka

ð19Þ

Thus a = −P1/(3K + 4μR2
3/R1

3) = −P1/[3K + 4μ(1 + 1/g)] and
a = −(σa − P1)g/3Ka, so

ðσa � P1Þ½gK=Ka þ 4μð1þ gÞ=3Ka� ¼ P1 ð20Þ
and thus we have:

P1 ¼ σa
gK=Ka þ 4μð1þ gÞ=3Ka

1þ gK=Ka þ 4μð1þ gÞ=3Ka
ð21Þ

We then derive the stress profile as

σrr ¼ a 3K þ 4μR2
3

r3

� 	
¼ �P1

3K þ 4μR2
3=r3

3K þ 4μR2
3=R1

3 ð22Þ

P2 ¼ �σrrðR2Þ ¼ P1
3K þ 4μ

3K þ 4μR2
3=R1

3 ¼ P1=½1� 1=gð1þ 3K=4μÞ�

ð23Þ
and for the strain in the adsorbent core

urr ¼ ðσa � P1Þ=3Ka ¼ σa=3Kað1þ gK=Ka þ 4μð1þ gÞ=3KaÞ
ð24Þ

ε ¼ ðσa � P1Þ=Ka ¼ σa=Kað1þ gK=Ka þ 4μð1þ gÞ=3KaÞ ð25Þ
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