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Transport and adsorption under liquid flow: the
role of pore geometry†

Jean-Mathieu Vanson,ab Anne Boutin,*a Michaela Klotzb and François-Xavier Coudert*c

We study here the interplay between transport and adsorption in porous systems with complex

geometries under fluid flow. Using a lattice Boltzmann scheme extended to take into account the

adsorption at solid/fluid interfaces, we investigate the influence of pore geometry and internal surface

roughness on the efficiency of fluid flow and the adsorption of molecular species inside the pore space.

We show how the occurrence of roughness on pore walls acts effectively as a modification of the solid/

fluid boundary conditions, introducing slippage at the interface. We then compare three common pore

geometries, namely honeycomb pores, inverse opal, and materials produced by spinodal decomposition.

Finally, we quantify the influence of those three geometries on fluid transport and tracer adsorption. This

opens perspectives for the optimization of materials’ geometries for applications in dynamic adsorption

under fluid flow.

Introduction

Due to their high specific surface area, porous materials are
widely used in industrial-scale processes for a broad range of
applications involving surface interactions such as phase
separation, gas mixture separation, or ion exchange and capture.
In the liquid phase, practical applications at a large scale include,
for example, water decontamination and removal of pollutants
such as heavy metals or radioactive ions.1–3

Understanding at the microscopic scale the physical phenomena
occurring in these materials is key to improve and optimize
their working capacity. The adsorption capacity itself, namely
the density of adsorption sites and their activity, is the first
parameter to consider. Nevertheless, the best adsorbent would
be completely useless if the topology of the material’s pore
space does not allow the species to move freely to the active
adsorption sites, and thus transport of molecular and ionic
species is also of paramount importance. Both transport and
adsorption properties of porous materials directly depend on
the internal pore geometry. As a consequence, understanding
how the geometry of porous materials impacts both transport
and adsorption represents a great stake to design more and
more efficient systems.

The topics of fluid transport4 and physical adsorption5 in
porous materials have been thoroughly investigated using
computational methods in the literature. However, there exist
relatively few studies demonstrating how to use numerical
methods to study the coupling of fluid transport and adsorption,
especially in complex or ‘‘realistic’’ porous materials. Of the exam-
ples available in the recent literature, some use atomistic-scale
modelling, studying for example the adsorption and diffusion in
mesoporous silica through molecular dynamics and Monte Carlo
methods.6,7 Another approach, at the other end of the scale, is to
perform three-dimensional numerical studies based on stochastic
models, for example to shed light on the adsorption kinetics of
chromatographic packed beds.8,9 More recently, Botan et al.
proposed a bottom-up model, rooted on statistical mechanics,
to upscale molecular simulation and describe adsorption and
transport at larger time and length scales.10

It is important to note that when dealing with hierarchical
porous materials which present complex pore geometries pre-
senting multiple length scales, atomistic molecular simulation
methods become computational prohibitive, because of the
large system sizes necessary for an accurate representation of
the pore space. While those methods perform well for nano-
sized systems and can describe in detail the local phenomenon
of adsorption, they do not allow to efficiently compute solute
properties at a macroscopic level and in the timescale required
for fluid dynamics. On the other hand, at a macroscopic level,
computational fluid dynamics is the focus of an entire field of
research and simulates very well the behavior of the fluid.
However, they are difficult to adapt to multiphase systems and
to take into account the adsorption process in heterogeneous
systems. There has thus been in recent years a focus on the
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development of methods aimed at modeling transport and
adsorption in hierarchical porous materials of various nature
and pore sizes. For an introduction to those, we refer the reader
to the recent review of Coasne.11

In this work, we use a lattice-based mesoscopic fluid simulation
method, namely a lattice Boltzmann model12,13 recently expanded
to take into account adsorption,14,15 to investigate the effects of
pore geometry on the adsorption and transport of species in a
fluid flow. In the following sections, we first describe the lattice
Boltzmann model used in this study. We then investigate the
effect of random roughness on transport and adsorption and
finally study the influence of three different geometries on
transport and adsorption.

I. Methods
A. The lattice Boltzmann method

The lattice Boltzmann (LB) simulation method finds its origins
in the 1980s and comes from bringing together the idea behind
lattice gas cellular automata and concepts of statistical physics,
through the Boltzmann equation.16–18 As a lattice-based technique
governed by local time-evolution equations, it is relatively simple to
implement and to parallelize on multicore systems. Moreover,
local microscopic interactions can be readily implemented in the
model, which is of high interest in our case for modeling fluid
behavior in porous media.12 Unlike classical computational fluid
dynamic methods, the lattice Boltzmann method does not solve
explicitly the Navier–Stokes equation; however, by numerical
integration of the Boltzmann equation, it can be shown to
satisfy the incompressible Navier–Stokes equation.19

At the center of the lattice Boltzmann method is the propagation
of the one-particle velocity distribution function f (r,c,t) equivalent
to the probability of a particle to be at node r of the underlying
lattice, with velocity c at a given time t. Time, space and velocities
are all discrete quantities in this scheme. Space is discretized by
adopting a cubic mesh (or lattice) as a basis for the simulation.
Velocities are discretized by projecting them on a finite number of
lattice vectors. In three dimensions, several different models of
discretized velocities exist, such as D3Q15, D3Q19, and D3Q27
(featuring 15, 19 and 27 lattice vectors, respectively).12,18 Here
we chose to use the D3Q19 model (see Fig. 1b), as a best compromise
between precision and computational speed.20

Time is discretized by integrating the propagation equation
numerically, by finite time steps Dt. The dynamics of the fluid
on the lattice are governed by the following propagation equation:

fi rþ ciDt; tþ Dtð Þ ¼ fiðr; tÞ þ
f ei ðr; tÞ � fiðr; tÞ
� �

t
þ Fext

i (1)

where fi is the component of f on velocity vector i, i.e. fi(r,t) =
f (r,ci,t). The field fe

i corresponds to the local Maxwell–Boltzmann
equilibrium distribution, and t is the relaxation time. The term
Fext

i accounts for external forces acting on the fluid and creating
the fluid flow; in our case, they will correspond to a unidirectional
pressure gradient throughout the system. This equation is
implemented in our simulations following the method of Ladd
and Verberg,13 relevant for simulations of fluid dynamics in

porous materials. We assume, in this type of materials, a
laminar flow regime. The permeability of the fluid can thus be
computed using the Darcy law:

K j
F ¼ nr

vj
� �
F

j
ext

; (2)

where j = x, y, z corresponds to one of the three directions of
space, hvji to the mean velocity of the fluid, Fext to the external
forces, n to the kinematic viscosity of the fluid, and r to the
volumetric mass density of the fluid.

B. The moment propagation method

To simulate the dynamical properties of solute dispersed in the
fluid, we use the moment propagation method proposed by
Lowe and Frenkel21,22 and further validated by Merks et al.23 In
this method, a propagated quantity P(r,t) is defined on the
lattice which evolves following:

Pðr; tþ DtÞ ¼
X
i

P r� ciDt; tð Þpi r� ciDt; tð Þ

þ Pðr; tÞ 1�
X
i

piðr; tÞ
! (3)

where pi(r,t) corresponds to the probability of leaving node r
with speed ci:

piðr; tÞ ¼
fiðr; tÞ
rðr; tÞ � wi þ wil with l ¼ 2Db

vT2Dt
(4)

Here r is the fluid density, wi are constant weights of the speed
model (D3Q19 in this case), Db is the diffusion coefficient of the
tracers in the fluid in the bulk phase, and vT is the fluid’s speed of
sound (vT

2 = 1
3Dx2/Dt2, with Dx being the lattice spacing). The

propagated quantity is not a physically understandable parameter
but, by its mathematical construction, provides access to the
behavior of tracers inside the fluid. For a particular choice of the
propagated quantity, namely the probability to arrive at position r
at time t, weighted by the initial velocity of the tracers (in practice,
one quantity is propagated for each component of the velocity), the
velocity auto-correlation function Z is then computed by

ZðtÞ ¼
X
r

Pðr; tÞ
X
i

piðr; tÞci

!
(5)

The dispersion coefficient K is an interesting dynamical property
of the tracers inside the fluid.24–26 It quantifies the spreading of

Fig. 1 Left: Roughness generation process based on LB weights. Right:
Scheme of the D3Q19 speed model.
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particles inside the fluid and may be defined from the standard
deviation of the position of tracers over long times:

K ¼ lim
t!1

s2

2t
where s2 ¼ hr� ri2 (6)

with %r being the average position of the particles at the considered
time. In practice, we compute it from the offsetted integration of
the velocity auto-correlation function:

K ¼
ð1
0

ZðtÞ � Zð1Þ½ �dt (7)

C. Accounting for adsorption

Only a a few studies exist in the literature about modeling
transport and adsorption using the lattice Boltzmann model.
Agarwal et al. developed, in 2005, a lattice Boltzmann model for
one-dimensional breakthrough curves to model the behavior of
toluene on silica gels.27 Manjhi et al. studied with this model
the two-dimensional unsteady-state concentration profiles for
packed bed adsorbents.28 Zalzale et al. used another scheme to
study the permeability of cement pastes.29 Anderl et al. used the
lattice Boltzmann model to simulate bubble interactions and
adsorption in protein foams.30 Pham et al. and Tallarek et al.
employed the lattice Boltzmann model to study the transport
and the adsorption in packed beds.8,31 With the growing
interest for the shale gas, we find also some studies about the
transport and adsorption in kerogen pores.32,33 More recently,
Long et al.34 developed a new scheme to introduce all the
IUPAC adsorption isotherms in the lattice Boltzmann scheme.

We use in this work a novel lattice Boltzmann model
coupling transport of species and adsorption developed14 and
extended recently by the authors of the present paper to
account for saturation and heterogeneity in the adsorbed
density.15 In this scheme, adsorption takes place on the inter-
facial sites of the material, i.e. at the fluid nodes having at least
one neighboring solid node. The neighbors are detected following
the D3Q19 speed model. The adsorption process is described as an
equilibrium between two populations: adsorbed and non-
adsorbed (free) species. The adsorption kinetics is set up using
three parameters: the adsorption coefficient Ka, the desorption
coefficient Kd and the saturation coefficient Dmax. The interplay
between transport and adsorption is computed using the
adsorbed and free densities:

Dadsðr; tþ DtÞ ¼ 1�Dadsðr; tÞ
Dmax

� �
Dfreeðr; tÞpa þDadsðr; tÞ 1� pdð Þ

Dfreeðr; tþ DtÞ ¼ Dfreeðr; tÞ 1� pa þ pa
Dadsðr; tÞ
Dmax

� �
þDadsðr; tÞpd

(8)

where pa = kaDt/Dx and pd = kdDt. At t = 0, these two quantities
are then equilibrated. This scheme corresponds to a Langmuir
adsorption model. The adsorbed quantity nads follows:

nads Cextð Þ ¼ Qmax

ms

kCext

1þ kCext
(9)

where ms corresponds to the mass of the material. Qmax =
DmaxSs, Cext = Ctot(1 � Fa) and k = Ka/(KdDmax). The adsorbed
fraction Fa may be computed analytically with the relation:

Fa ¼ 1þ pdVp

paSs

� 	�1
(10)

Nevertheless this equation does not take account of the saturation
of the adsorption sites neither for eventual heterogeneities on the
adsorbed density due to fluid flow. After this preliminary step to
compute the adsorbed and free densities, we propagate on the
same scheme the two propagated quantities P and Pads to compute
the dynamics of the tracers and their interactions with the
adsorption sites to reach thermodynamic equilibrium:

Padsðr; tþ DtÞ ¼ 1�Dadsðr; tÞ
Dmax

� �
Pðr; tÞpa þ Padsðr; tÞ 1� pdð Þ

Pðr; tþ DtÞ ¼ Pðr; tÞ 1� pa þ pa
Dadsðr; tÞ
Dmax

� �
þ Padsðr; tÞpd

(11)

This last equation gives the framework to compute the velocity
auto-correlation function, the diffusion coefficient and the
dispersion coefficient, thanks to eqn (5) and (7).

D. Practical details

The simulation reported here is performed considering a
laminar flow regime. We also use periodic boundary conditions
on the three axes (x, y, z), and no slip boundary conditions at
the liquid/solid interface for the lattice Boltzmann scheme and
the moment propagation method. We employed convergence
criteria during simulations to ensure the convergence and
verify that the parameters rely on the steady state. We used a
convergence criterion of 10�14 (in relative step-to-step variation)
for the average velocity of the fluid along the three directions of
space, 10�12 Dx/Dt on the velocity autocorrelation function,
10�11 for the step-to-step variations of the fraction adsorbed,
and 10�9 for the step-to-step variations of the dispersion
coefficient. For the heterogeneity coefficient and its probability
distribution function, we did not use any convergence criteria
but we performed several simulations at different numbers of
time steps, to be sure of reaching the steady state. The lattice
Boltzmann scheme employed here works in reduced units. The
results presented in this study are in Scientific International
(SI) units (except the mesh size lx, ly, lz). The method to switch
between reduced units and SI units is available in the ESI.†
Throughout the simulations we fixed: the bulk diffusion coefficient
(Db = 6.04� 10�8 m2 s�1), the kinematic viscosity (n = 10�6 m2 s�1),
the density of the fluid (r = 1000 kg m�3) and the density of the solid
(rs = 4970 kg m�3).

II. Impact of roughness on transport
and adsorption

From the published literature, many studies of adsorption and
transport of fluids in porous media focus on the simple geometrical
model of the porosity, with ‘‘regular’’ or smooth surfaces. The impact
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of surface roughness at the local scale on the adsorption
properties has been treated by some studies in the gas
phase35,36 and on protein adsorption.37,38 In an earlier lattice
Boltzmann study of adsorption and transport, we have seen an
impact of local surface patterning, e.g. by comparing a smooth
slit pore to one with grooves on the solid walls.15 Herein, we
want to go further and investigate the effect of roughness on
fluid flow and adsorption in a more realistic and geometrically
complex model of pores with rough surfaces.

We focus here on roughness as a microscopic geometric
heterogeneity on the internal surface of a pore of larger
dimensions. The roughness thus represents a deviation – or
the presence of defects – from an ideal geometry. It may have
several origins, such as mechanical, chemical process or physical
processes. It is omnipresent in real materials, but its scale and
thus its impact depend drastically on the synthesis, activation, and
chemical and physical history of each porous material. The effect
of surface roughness has been studied in many research fields like
biology,38,39 optic,40 coatings41 or fluid dynamics.42,43 For fluids in
particular, in the case of hydrophobic interactions at the solid/
liquid interface, the roughness can strongly affect the flow profile
and in some cases it leads to a very low drop pressure due to
slippage at the liquid/solid interface.44,45

A. Generating rough surface models and measuring roughness

We describe here a simple model used to generate geometries
of porous solids with roughness on their internal surface by a
stochastic process of aggregation that mimicks the random
deposition of nano-sized solid particles on the walls of a pre-
existing pore system. To do so, we rely on the lattice Boltzmann’s
underlying lattice vectors and definitions of neighboring nodes.
Starting from an initial geometry (which we call the skeleton), a
fluid node is randomly selected. We evaluate its degree of
connectivity with solid neighbors (see Fig. 1a) by computing an
aggregation coefficient a:

a ¼
X
ðsolidÞ

wi (12)

where a corresponds to a sum over all the node’s solid neighbors,
weighted by the coefficient of the D3Q19 speed model (see
Fig. 1b). As an input parameter of the generation algorithm, we
define the aggregation condition Ac. If a 4 Ac the node becomes
solid, otherwise it remains fluid – this mimicks a process of
aggregation of smaller particles, which are allowed to ‘‘stick’’ to
the existing surface if the contact is large enough. Then, we
repeat the aggregation process to another node chosen randomly
again and again until we reach a convergence criterion on
porosity or specific surface area.

After obtaining a new model of porous solid from this
algorithm, we apply a filter to remove all nonconnected porosity
(inaccessible cages) which may have been created during the
aggregation process. This process ensures the connectivity of
all the fluid nodes for the lattice Boltzmann simulation and
avoids artifacts in the moment propagation.46 To do that, we
use a simple neighbor-to-neighbor propagation process. We
initialize a quantity on one of the two sides of the simulation

box orthogonal to Fext, and then we propagate the quantity from
neighbor to neighbor. At the end of the propagation the fluid
nodes where the quantity is not set up become solids. After
that, the process is repeated with an initialization on the
opposite side of the simulation box.

This entire procedure allows us to create models of rough
porous materials based on any given geometry defined on a
cubic lattice, and through the parameter Ac we can tune the
extent of roughness. To quantify this, we define the following
roughness coefficient:

Rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

yij j � yih ið Þ2
q

(13)

corresponding to the standard deviation of the minimal distance
between the surface of the aggregated geometry and the original
skeleton. There exist many other definitions of the roughness
coefficient, mainly from the field of mechanical engineering,47

but as our goal here is merely to compare between different
geometries, a universal definition is not necessary.

Fig. 2 shows the evolution of the roughness coefficient as a
function of the number of aggregation steps. In this case, we
chose as skeleton geometry a slit pore with a mesh size of
lx = 50Dx, ly = 50Dx, and lz = 52Dx (size of the simulation box)
and a convergence criterion on the porosity F = 0.7. Each point
corresponds to the mean value of a set of 10 generations having
the same input parameters. The error bars correspond to the
standard deviation. We see that each aggregation condition Ac

gives rise to different values of roughness coefficient Rr and its
evolution as a function of the number of steps in the generation
algorithm. The error bars are small, showing that although we
chose a stochastic procedure, the overall result is not very
sensitive to the randomness. The value of Rr stabilizes at a
high number of steps Tmax, and the parameter Ac acts as a good
control parameter to tune the roughness coefficient.

B. Impact of roughness and disorder

Before we set out to explore the influence of roughness on
dynamical properties of transport and adsorption, in this
section we quantify the impact of the randomness (or disorder)

Fig. 2 Mean value of roughness coefficient as a function of the number of
steps of the generation procedure, with different aggregation conditions
Ac. Values originate from a sampling of 10 geometries having the same
input parameters, and error bars correspond to the standard deviation.
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in the roughness on these properties. For this purpose, we
created a series of 10 porous geometries for each value of Ac(1/8, 1/16,
1/32) having otherwise the same values of input parameters.48

Looking at the standard deviation of the measured quantities
related to adsorption and transport in the random pore spaces, we
describe in Fig. 3 the roughness coefficient (Rr), the specific surface
area (Ss), the permeability (Kf), the average velocity of the fluid in the
y-direction (hvyi), the fraction of tracers adsorbed (Fa), the mean pore
size (dp), the porosity (F), the porous volume (Vp), the dispersion
coefficient (K), and the heterogeneity of adsorbed density x.
Although there are clearly some variations in independent
realizations of the rough geometry for a given value of rough-
ness, this is relatively minor, with all the normalized standard
deviations below 6%. The quantities most impacted (more than
2.5%) are related to the heterogeneity of the adsorbed tracers at
high roughness and the dispersion coefficient. Given the overall
low sensitivity, for the two following sections, we will neglect
the deviation caused by the random part of the roughness
generation and describe the roughness of the surfaces simply
by the Rr coefficient.

C. Influence of adsorption on transport of tracers

We first study the impact of roughness on fluid properties,
computing the velocity profile and the permeability coefficient
in order to quantify the importance of roughness on geometries.
Fig. 4 shows the flux profiles along the pressure drop for a non-
aggregated geometry (slit pore with an equivalent mean pore
size of dp = 1.6 mm and planes perpendicular to the z-axis on top
and at the bottom of the simulation box) and three aggregated
geometries having Ac = 1/8, 1/16, 1/32 on a slit pore (simulation
box of size lx = 50Dx, ly = 50Dx, and lz = 52Dx), planes
perpendicular to the z-axis on top and at the bottom of the
simulation box and the convergence criterion on porosity for
roughness aggregation (F = 0.7).

The velocity of the fluid inside the pore decreases when the
roughness is larger. The roughness obstructs the pore while
the mean size of the pore dp (see Table 1) remains constant. The
difference in the flux profile comes from the deviations of the

surface, namely the roughness. Computing the velocity profile
for a slit pore with a pore size corresponding to the mean pore
size of aggregated geometries highlights an unexpected effect.
For a low roughness value (Ac = 1/8), the velocity is higher
compared to the slit pore, whereas we were expecting a value
lower than the slit poreone. Investigating this unexpected effect,
we showed that it appears as an artefact of the discretization in the
simulation, and does not have physical meaning. In fact, close to
the surface of the pore, the roughness creates only some local
pores defined with one or two nodes,i.e., the length scale of the
rugosity is close to the lattice spacing. Thus, the application of
the bounce back rules (to ensure no-slip boundary conditions)
combined with a single relaxation time may give a local dependence
of the viscosity of the fluid on the local pore size.49 To confirm this,
we investigated the influence of mesh size on fluid behavior, by
performing simulations on the same geometry with several refined
meshes. The results (detailed in the ESI†) show a dependence of the
results of permeability coefficient on the discretisation of the little
pores located in the roughness. The presence of this artefact in the
randomly generated surface of the pore suggests to be careful when
we generate geometries, especially those coming from tomography
pictures where the surface roughness is poorly controlled.

Fig. 4b shows the evolution of the permeability coefficient as
a function of the roughness, and this evolution is the same as
that of the fluid’s velocity: it decreases with increasing roughness
coefficient. In the regime studied, the evolution appears rather
linear. The values of the permeability coefficient confirm the
unexpected behavior seen previously on the flux profiles, namely
that the roughness with Ac = 1/8 gives a higher permeability than
the slit pore. This counter-intuitive effect is very interesting
because it offers the opportunity to improve the materials. Having
the same mean pore size, it is possible to decrease the drop
pressure just with the introduction of some controlled roughness.

Fig. 3 Sensitivity of adsorption and transport properties on roughness
random aggregation. Rr: roughness, Ss: specific surface area, Kf: perme-
ability coefficient, hvi: average velocity of the fluid, Fa: fraction of tracers
adsorbed, dp: mean pore size, F: porosity, Vp: porous volume, K: dispersion
coefficient, and x: spatial heterogeneity of adsorbed density.

Fig. 4 (a) Velocity profile in a slit pore with roughness (Ac = 1/8, 1/16, 1/32)
compared with a flat slit pore of equivalent mean pore size dp = 1.6 mm.
L corresponds to the distance between the planes of the slit pore. Here Fext

is kept constant to 5 � 109 Pa m�1. (b) Effect of roughness on permeability
for Ac = 1/8, 1/16, 1/32.

Table 1 Values of the geometrical and permeability properties of the slit
pore with and without roughness

Slit pore Slit pore aggregated

Ac — 1/8 1/16 1/32
Rr (mm) — 4.4 � 10�2 8.1 � 10�2 1.1 � 10�1

dp (mm) 1.6 1.6 1.6 1.6
KF (m2) 2.1 � 10�13 2.3 � 10�13 1.8 � 10�13 1.4 � 10�13
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In addition, the introduction of this roughness will increase the
specific surface area, i.e. the adsorption capacity. We demonstrate
here a way to increase the adsorption capacities and the perme-
ability at the same time, through geometrical tuning of the inner
pore surface.

We now turn to the dispersion coefficient, which is representative
of the spreading of tracers in the fluid. In previous work, we
have studied the influence of an ordered roughness (a slit pore
with crenelated pores on the walls) and have shown the ratio of
the crenels’ height to width, r = h/w, has an influence on the
dispersion coefficient in the presence of adsorption: the dispersion
coefficient increases with the ratio r.15 As the crenels are analogous
to an ordered roughness of the pore surface, we expect to observe
something similar here.

And indeed, the random roughness generated here has also
an influence on the dispersion coefficient, as is shown in Fig. 5a.
For a given roughness value, the influence of Fa on the dispersion
coefficient is the same as the one observed previously with slit
pore and crenelated pores.15,50 For low adsorption strength, all
the tracers are free and have a dispersion due to fluid flow. When
the tracers start to adsorb, they create a disparity of position
compared to the tracers that are free in the fluid: the dispersion
coefficient increases. For high adsorption strength, the majority
of the tracers are immobile (adsorbed): the dispersion tends to
zero. At an intermediate regime, we thus observe a maximum of
dispersion.15

Nevertheless, the influence of roughness on dispersion is
inverted. With crenelated pores the dispersion coefficient
increases when the roughness increases, whereas in the present
case, the dispersion coefficient surprisingly decreases when the
roughness coefficient increases.

Fig. 5b shows the dispersion coefficient as a function of the
mean velocity of the fluid. The curves obtained for various
values of roughness cross together in a single point. That
means the order between the curves of Fig. 5a may change
regarding to the mean velocity of the fluid. This was clearly not
the case when we studied crenelated pores. Another parameter
plays a key role in the phenomena involved here at an order of
magnitude higher than the roughness coefficient: the mean pore
size. When we studied crenelated pores in earlier work, we kept
constant the distance between the tops of the crenels. Here, in
contrast, the mean pore size is kept constant. It is proved from
Fig. 5c that pore opening is the key parameter. Setting the mean
pore size constant, it shows the evolution of the dispersion
coefficient as a function of the mean velocity of the fluid in
different slit pore crenelated geometries having different values
of r. We obtain the same behavior as for random roughness.

This means, in terms of materials design, to increase the
separation performance of the materials by introducing some
roughness, the minimal pore size (or minimal opening dia-
meter) is to be considered as a key parameter, rather than the
average pore size.

D. Influence of flow on adsorption

In previous work we have shown that the fluid flow can create
some heterogeneity in the adsorbed density, taking away

species from the upstream adsorption sites and accumulating
tracers in downstream sites.15 Here we wanted to see if the
same phenomenon occurs at the local scale when disordered
roughness is present (in contrast to our previous work on
regular grooved pores). Fig. 6 shows the plot of the relative
deviation Fads of the adsorbed density:

Fads ¼
Dads � Dadsh i

Dadsh i (14)

in the presence of flow (Fext = 5 � 109 Pa m�1) for three different
values of the roughness coefficient in a slit pore. In Fig. 6 we

Fig. 5 (a) Influence of roughness on the dispersion coefficient (K) as a
function of the fraction adsorbed (Fa) at constant values of Fext = 5� 109 Pa m�1,
Ka = 6.0 m s�1 and Kd = [6.0� 108; 3.4� 108; 1.9� 108; 1.1� 108; 6.3� 107;
6.0 � 107; 2.4 � 107; 9.6 � 106; 3.8 � 106; 1.5 � 106] s�1. (b) Influence of
roughness on the dispersion coefficient (K) as a function of the average
velocity of the fluid (hvyi) with Ka = 6.0 m s�1, Kd = 6.0 � 107 s�1 and Fext =
[2 � 108; 4 � 108; 6 � 108; 8 � 108; 10 � 108] Pa m�1. (c) Influence of
crenelated pores on the dispersion coefficient (K) as a function of the
average velocity of the fluid (hvyi) with Ka = 6.0 m s�1, Kd = 6.0� 106 s�1 and
Fext = [2 � 108; 4 � 108; 6 � 108; 8 � 108; 10 � 108] Pa m�1.
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notice some disparities in the adsorbed density toward the
flow. These heterogeneities are limited locally to a few percents,
and we report in Table 2 the value of the heterogeneity
coefficient x in each case:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fads

2h i
q

(15)

Unlike for the crenelated slit pore geometry, x does not
increase monotonically with the aggregation condition. The
value at Ac = 1/32 is lower than the value at Ac = 1/16. We already
know from previous work that heterogeneity is strongly dependent
on the velocity of the flow, and here the increase of the roughness
coefficient makes the fluid velocity decrease. We have a competition
between the influence of the size of local geometrical cavities
(roughness) and the speed of the fluid. This phenomenon,
established in prior work on model geometries, is here shown to
be generic and applicable to disordered and rough pore surfaces.

III. Geometry comparison

Comparing porous materials for adsorption applications under
fluid flow, two main parameters need to be taken into account
to judge their efficiency: the total adsorbed quantity (or adsorption
capacity) and the permeability (to ensure the lowest pressure drop).
We aim here at finding a way to compare materials with the same
‘‘chemistry’’, i.e. locally the same adsorption sites, but with distinct
pore geometries, and study the influence of the geometry on the
two characteristics of adsorption and transport.

To do so, we choose three totally different geometries,
displayed in Fig. 7: a honeycomb geometry having straight
and smooth pores, a sphere replica geometry having spherical
interconnected pores, and a very disordered geometry with
worm-like pores. The honeycomb geometry is typical of materials
synthesized using ice-templating methods,54 the sphere replica
is the characteristic pore space of inverse opal materials,55 and
the worm-like porosity is archetypal of materials produced by

spinodal decomposition.56,57 We first describe the procedures we
followed to create lattice-based models of these geometries, and
then go on to discuss their relative performance for adsorption
and fluid transport.

A. Geometry generation on a lattice

Honeycomb. The honeycomb geometry is simple due to its
translational invariance. To create a lattice-based model, we use the
same technique as the one used usually in computational aided
esdign. In a plane, we design the cross section of the geometry:
assembled hexagons. To fit with the nodes on the grid, the hexagons
do not have the same edge length (see Fig. 8). Assuming that a is the
length of the horizontal edges, the basic mesh size is 2(2a � 1)
horizontally and 2(a� 1) vertically. Once the cross section is created,
we extrude the profile along the direction perpendicular to the plane
to have the 3D geometry. To tune the amount of porosity of this
geometry, we assign some thickness w to the hexagonal profile.

Inverse opal. The inverse opal geometry is also highly
symmetric and can be constructed similarly (see Fig. 8). Starting
with a solid block, we create a spherical hole of diameter ds. Then
we replicate this hole in each direction at a distance dint. This
leaves windows of diameter dr between the spherical cavities:

dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2 � dint2

p
(16)

Spinodal decomposition. Materials produced by spinodal
decomposition – a phase separation process – feature pore

Fig. 6 Relative deviation in the adsorbed density (Fads) in the presence of
flow with different roughness. (a) Adsorbed density, Ac = 1/8. (b) Adsorbed
density, Ac = 1/16. (c) Adsorbed density, Ac = 1/32. Points that appear
unconnected to the porosity, in this 2D slice, are actually connected along
the direction perpendicular to the plane of the figure.

Table 2 Heterogeneity of the density adsorbed for aggregation conditions
1/8, 1/16, 1/32. Ka = 6.04 m s�1, Kd = 6.04 � 106 s�1

Ac 1/8 1/16 1/32
x (�10�3) 4.05 � 0.04 4.4 � 0.08 4.11 � 0.12
hVyi (m s�1) 1.16 0.892 0.702

Fig. 7 Lattice-based models for three different pore geometries, and
electron microscopy images from real-life materials with similar geometries.
Left: Honeycomb geometry;51 center: Inverse opal;52 right: Spinodal
decomposition geometry.53

Fig. 8 Sketch of honeycomb and inverse opal geometries and their
geometric parameters.
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geometries that are very disordered and worm-like channels
with no symmetry. There are studies in the existing literature
proposing numerical models of spinodal decomposition
materials,58–60 but for our purposes taking into account the
whole thermodynamics of such a process would be too time
consuming. To create lattice-based models of very disordered
geometries, like spinodal decomposition materials, we propose
here a simple method based on the Ostwald ripening principle.61

This principle concerns the ability of phases to rearrange themselves
to minimize surface energy, with small droplets tending to regroup
themselves to form bigger ones, a process which is easy to
model on a lattice.

Thus, we start by initializing the system as a random distribution
of solid/fluid nodes on the cubic lattice, with a fixed ratio (the initial
porosity). Then we choose a node randomly and compute the sum
of its links with neighbors having the same nature (i.e. the sum
of fluid–fluid or solid–solid neighbors), accounting for periodic
boundary conditions. The sum of the links, which we note s, is
weighted with the weights of the D3Q19 velocity scheme (see
Fig. 1b). We then compare s to a threshold value, which we set
at sc = 0.4. If s 4 sc, the node remains the same otherwise we
switch its nature (a liquid node becomes solid, and a solid node
becomes liquid). This step is repeated N number of times. After
the generation, we use a filter to remove unconnected solid
regions and inaccessible porous regions.

Fig. 9 shows the comparison of the pore size distribution
obtained using our algorithm and some pore size distribution
of spinodal decomposition available in the literature.62,63 The data
are computed from a sampling of 10 geometries having the same
input parameters. The errors bars represent the standard deviation
of the data obtained. The shape of the experimental and the one
we have computed are very close. The algorithm we have developed
is representative of the geometries obtained experimentally using
spinodal decomposition. Moreover, the algorithm is very fast. Its
takes less than one minute to create a geometry on a 100 � 100 �
100 mesh. Finally, both the overall porosity (the fraction of porous
volume) and the amount of tortuosity can be controlled by the two
parameters of the algorithm, namely the initial porosity and the
length N of the ripening process.

B. Comparing pore geometries

Physical properties such as fluid transport and adsorption in
porous materials are strongly linked to the geometry of the
material’s pore system. Modifying the pore geometry modifies

on the one hand the porosity and the specific surface area, and
on the other hand the behavior of fluid and the motion of
species. Transport and adsorption are often inversely linked.
Modifying a material to improve its adsorption skills generally
decreases its transport properties and to improve its transport
properties generally decreases its adsorption skills. This makes
the comparison between materials tricky. To avoid an enormous
generation of data and objectively compare our three geometries
in terms of transport and adsorption, we can either maintain
constant the transport properties and see the influence on
adsorption or maintain constant the adsorption properties
and see the influence on transport properties. The easier way,
in our case, is to keep constant the adsorption properties and
see the influence on the transport properties. To do so, we have
to keep constant the adsorbed quantity per mass of material
(Qa). We already know that for low concentration of tracers

Fa ¼ 1þ KaSs

KdVp

� 	�1
(17)

where Fa is the fraction of tracers adsorbed (the ratio between
the amount of tracers adsorbed and the total amount of tracers),
Ka and Kd are, respectively, the adsorption and desorption
coefficients, Ss corresponds to the specific surface area and Vp

corresponds to the porous volume. Qa can be written as a
function of Fa:

Qa ¼
CiVp

rsVs
Fa (18)

where Ci represents the initial concentration of tracers, rs is the
volumetric mass of the solid part of the material and Vs is the
volume of solid. Considering eqn (17) and (18):

Qa ¼
CiVp

rsVs
1þ KaSs

KdVp

� 	�1
(19)

For our simulations, we consider the adsorption sites of the
three geometries to have the same characteristics (Ka = 6.04 m s�1

and Kd = 6.04 � 106 s�1), i.e. we study only the influence of
geometry at a fixed chemical composition of the porous material’s
walls. We also consider the solid part of the material as having the
same nature (rs = 4970 kg m�3), and the initial concentration of
tracers is constant (Ci = 1 g L�1). Considering this, to keep Qa

constant, we have to keep the ratios Vp/Vs and Ss/Vp constant. This
is equivalent to keeping the porosity F and the ratio Ss/Vp constant.

In order to do so, we have tuned the geometry to have the
same porosity F and then adjust the Dx (distance between two
nodes) to have the same ratio Ss/Vp. We adjust the thickness of
the wall of the honeycomb to make a variation in the porosity.
We adjust the distance between the spheres dint to vary the
porosity in inverse opal geometry, and we vary the number of
time steps to make variations on the spinodal decomposition
geometry. A table with the detailed characteristics of the
geometries is available in the ESI.† The adsorption isotherms
of the three geometries are also available in the ESI† and show
that the adsorbed quantity is the same for all the geometries at
low and high concentrations in solute.

Fig. 9 Left: Pore size distribution of a lattice-based model created
through the Oswald ripening procedure. Right: Experimental pore size
distribution of materials synthesized by spinodal decomposition.62
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C. Pore geometry influence on adsorption

Having shown earlier that the fluid flow may create some local
heterogeneities in the adsorbed density, we want to analyze it
here and investigate whether the geometry has any influence on
this heterogeneity. Fig. 10 presents a 2D cut view of Fads for
each material. The colored gradient represents the values of the
adsorbed density. The flow creates disparities in the case of the
spinodal decomposition geometry, between the upstream and
the downstream parts of the internal surface. This effect also
occurs in the inverse opal geometry with a more visible deviation
between the two sides of the geometry. No disparities occur in the
honeycomb, thanks to its slick surface oriented along the flow.
The heterogeneity is one order of magnitude higher in the
spinodal decomposition than in the inverse opal.

To compare quantitatively the heterogeneities, Fig. 11 shows
the probability distribution of Fads for each geometry. The
distributions are completely different. The distribution is a
single peak for the honeycomb, showing the absence of any

heterogeneity in the adsorbed density. Indeed, the smooth walls
oriented perfectly along the flow do not create heterogeneities. The
inverse opal distribution has a bimodal shape coming from the two
populations of the adsorbate stuck on the upstream and down-
stream parts of the geometry and that of spinodal decomposition is
a Gaussian-like function. In this geometry, the heterogeneity is
‘‘averaged’’ by the randomness of the geometry.

In conclusion, we see here that both the topology of the
geometry and its symmetries lead to completely different
shapes of the heterogeneity distribution function. The hetero-
geneity occurs only in geometries which are not flat along the
direction of the flow. A nonflat geometry allows for different
concentrations of tracers adsorbed in the upstream part and
the downstream part of the cavities.

D. Pore geometry influence on transport

Fig. 12a presents the pore size (dp) values of the three geometries
for three different values of porosity. In this case, the porosity has
no influence on the pore size. It is a counter-intuitive effect of
keeping the adsorption constant. This means the variations of
porosity only influence the solid part of the material (the walls).
Increasing the porosity just increases the thickness of the wall and
does not modify the void part of the material. This would mean
that the ratio Ss/Vp is constant because Ss and Vp are constant
independently, but it is not the case here. The phenomenon is
more complex than just increasing the thickness of the walls.

The pore size of the honeycomb is almost two times bigger
than the others. Straight pores allow having the largest pore size.
As a consequence, the value of the honeycomb’s permeability
(KF) is 2.5 times higher than that of the spinodal decomposition
and 5 times higher than that of the inverse opal (see Fig. 12b).
This demonstrates the real interest of having porous materials
with straight pores. At equivalent adsorption skills, it gives the
highest permeability.

Fig. 12c presents the values of the parameter:

c ¼ KF

dp2
(20)

which is the ratio of the permeability to the squared pore size.
Note that this ratio is dimensionless. c is constant for all the
geometries. For this study, the permeability only depends on
the pore size, and the pore geometry has no influence on it.
This means to have a material with the best permeability skills

Fig. 10 Relative adsorbed density (Fads). Grey: Solid part, blue: Fluid part,
color gradient: Adsorption sites. Top panel: Spinodal decomposition cut
view at y = 1. Middle panel: Inverse opal cut view at y = 45. Bottom panel:
Honeycomb cut view at z = 1.

Fig. 11 Probability distribution function of the relative adsorbed density
(Fads), with porosity F = 70%.
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for a given adsorption capacity, we have to find a way to increase
the pore size independent of the porosity and the ratio Ss/Vp.

IV. Conclusion

We have studied here the interplay between adsorption and
transport in porous materials under liquid flow, and the impact
of the geometry of the pore system on these two properties. By
using a lattice Boltzmann scheme extended to take into account
the adsorption of tracers in the liquid phase, we showed how
both adsorption and fluid transport are affected by global
geometric characteristics (pore shape and alignment with the
fluid flow) as well as local geometric features (such as roughness
of the pore surface). In particular, we showed that the roughness
of the pore walls effectively modifies the nature of the solid/fluid
interface, introducing slippage in a system which would other-
wise have a no-slip boundary condition. Moreover, we generated
realistic models of complex experimental materials and quantified
the impact of geometry on fluid transport and tracer adsorption.

This sheds light into the optimization of materials for applications
in the dynamic separation of species by adsorption under fluid
flow. Future work will address the kinetics of fluid adsorption and
the dynamics at the scale of the adsorbent sample, to bring the
lattice Boltzmann technique closer to model flow experiments
in, e.g., liquid chromatography. Moreover, more work will be
necessary to replace the complex model geometries used in this
work – as realistic as they may be – with actual 3D images of
real-life materials, obtained for example by X-ray tomography.
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