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Understanding adsorption-induced structural transitions in metal-organic
frameworks: From the unit cell to the crystal
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Breathing transitions represent recently discovered adsorption-induced structural transformations
between large-pore and narrow-pore conformations in bi-stable metal-organic frameworks such as
MIL-53. We present a multiscale physical mechanism of the dynamics of breathing transitions. We
show that due to interplay between host framework elasticity and guest molecule adsorption, these
transformations on the crystal level occur via layer-by-layer shear. We construct a simple Hamil-
tonian that describes the physics of host-host and host-guest interactions on the level of unit cells
and reduces to one effective dimension due to the long-range elastic cell-cell interactions. We then
use this Hamiltonian in Monte Carlo simulations of adsorption-desorption cycles to study how the
behavior of unit cells is linked to the transition mechanism at the crystal level through three key
physical parameters: the transition energy barrier, the cell-cell elastic coupling, and the system size.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765369]

I. INTRODUCTION

There has been growing interest in porous coordination
polymers or metal-organic frameworks (MOFs) as a new
family of nanoporous materials built from organic ligands
and metal centers.1 In particular, much attention has recently
been focused on a fascinating subclass of metal-organic
frameworks that behave in a remarkable stimuli-responsive
fashion.2, 3 These soft porous crystals feature dynamic
crystalline frameworks displaying reversible, large-amplitude
structural deformations induced by various external stimuli
such as temperature, mechanical pressure, or guest adsorp-
tion. When we focus on adsorption, an intriguing physical
phenomenon called “breathing” has been discovered in a
subclass of flexible MOFs. Solids of the MIL-53 family4 are
prototypical materials displaying breathing transitions. This
phenomenon is displayed in abrupt changes of the framework
volume triggered by adsorption of guest molecules that
is explored to devise advanced adsorbents, drug delivery
systems, sensors, and actuators.5, 6 This phenomenon involves
a complex interplay of adsorption and elastic interactions in
the solid, giving rise to structural phase transitions between
what have been called large pore (lp) phase and narrow pore
(np) phase.

In Fig. 1 is shown the adsorption-desorption isotherm of
Xenon at 220 K on a MIL-53(Al) sample,7 which displays a
typical double breathing transition. The MIL-53 framework is
made of parallel one-dimensional M(OH) chains (M = Al3+,
Cr3+, Ga3+, . . . ) linked together by 1,4-benzenedicarboxylate
(BDC) ligands to form linear diamond-shaped channels that
are wide enough to accommodate small guest molecules. This
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structure may oscillate between lp and np phases, which have
a remarkable difference in unit cell volume of up to 40%8, 9

(see schematics in Fig. 1). What is striking is that the transi-
tion from the larger volume lp phase to the smaller volume np
phase is not necessarily accompanied with the release of guest
molecules that would be expected for the normal “exhaling.”
For example, the equilibrium state of the MIL-53 crystal at
220 K in the absence of guest molecules is in the lp phase, and
upon Xe adsorption, there first occurs the transition from the
unloaded lp phase to the loaded np phase.7 This transition is
associated with a sharp uptake of Xe from a loading of 0.2
to 2.5 molecules per unit cell and a decrease of the crystal
volume by 25%. Upon further increase of the gas pressure,
adsorption gradually proceeds in the np phase up to a certain
point when the second, now “normal,” breathing transiting oc-
curs from the np phase to the lp phase. The sample abruptly
“inhales,” increasing the loading from 2.7 to 6.5 molecules
per cell, and expands, compensating for the volume lost upon
the first lp → np transition. On the desorption pass, the re-
verse normal lp → np and abnormal np → lp exhaling transi-
tions take place with a prominent hysteresis. This breathing
phenomenon is engendered by guest-host adsorption inter-
actions mediated by the elasticity of three-dimensional host
framework, which are currently poorly understood. The spe-
cific variations of the linker conformations in the lp and np
phases during breathing transitions have been studied at the
molecular level by Férey and co-authors, both experimen-
tally (in situ x-ray diffraction)8 and using molecular simula-
tion (single point density functional theory calculations and
force-field-based dynamics).10 These works provide useful in-
sight into the chemistry of the transformation of linker bonds
associated with the framework deformation. However, a
knowledge gap exists between this molecular understanding
and the question of how the adsorption of guest molecules
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FIG. 1. Adsorption (red) and desorption (blue) isotherms archetypical of the
“breathing” double structural transition in materials of the MIL-53 material:
experimental data for Xenon in MIL-53(Al) at 220 K.7

induces the physical forces responsible for macroscopic struc-
tural transformations on the sample level.

In this work, we develop a model of the dynamics of
adsorption-induced deformation and structural transformation
in MIL-53 type porous crystals based on the coupling of the
host-guest adsorption interactions with the elastic response of
the three-dimensional framework of a given geometry. The
first results obtained using this model were showcased in an
earlier letter,11 and we aim here at giving its full description
as well as more recent results we obtained from it. The struc-
ture of the paper is as follows. In Sec. II A, we analyze the
basic equations of the elasticity theory in three-dimensional
frameworks. Special attention is paid to the compatibility con-
ditions implied by the Saint-Venant principle. We conclude in
Sec. II B that the deformation in MIL-53 type crystals occurs
as concerted shear motion of 2D layers of cells. As such, the
transition can be described with one principal order parame-
ter related to the cell volume. This reduces the initial three-
dimensional model to a one-dimensional model with long-
range elastic interactions. In Sec. II C, we show how to build a
minimalistic model Hamiltonian coupling local elastic defor-
mations, long-range elastic interactions, and guest adsorption.
The latter is described by the adsorption energy and adsorp-
tion stress. This system dynamics is analyzed by performing
grand canonical Monte Carlo (MC) simulations (Secs. II D
and II E) modified to account for the energy barrier of the
lp ↔ np transition. The specifics of the transition dynam-
ics are studied in Sec. III by varying the energy barrier and
the parameter responsible for elastic interactions. We also ex-
plore the influence of the crystal size on the transition dy-
namics. In Sec. IV, summarizing the results, we conclude that
the suggested model explains the mechanisms of breathing
transition and reproduces its experimental features including
structural changes, hysteretic nature of transitions, and phase
coexistence.

II. MODEL DESCRIPTION

A. General treatment of deformation and elastic
compatibility equations

In order to introduce the elastic forces within the three-
dimensional lattice of a certain crystallographic symmetry,

we will follow below a rigorous approach of the theory of
elasticity based on the deformation strain tensor ε defined on
the level of individual unit cells. This tensor characterizes the
states associated to lp and np phases as well as the interme-
diate structural configurations along the path of the transition
phase between them. In general, the deformation strain tensor
ε between the two states 1 and 2 is defined through the dif-
ference of the metric tensors, g1 and g2, associated with these
states:

ε = 1

2
(g2 − g1). (1)

The metric tensor is a rank 2 tensor which can be calculated
from scalar products of the generating Bravais lattice vectors
{�vi , i = 1, 2, 3} as such

gij = �vi · �vj . (2)

The components of the deformation strain tensor are not
independent. In three dimensions, the displacement field has
3 independent components at any point, and the symmetric
strain tensor nominally has 6 independent components. Be-
cause the strain tensor is composed of the derivatives of the
local displacement vector field, there exist inherent relation-
ships or constraints among its components. These constraints
are imposed by the compatibility equations:12–16

∑
�

ε = 0, (3)

ε being the deformation strain summed along a closed path
� over the crystal lattice. These equations preserve the cell
lattice integrity and reduce the number of parameters needed
for the quantitative description.17–21 The non-locality of these
constrains gives rise to the long-range elastic interactions in
the lattice. Thus, even in the case of near-neighbor interac-
tions, Eq. (3) implies non-local interactions on the level of the
lattice.

B. Framework geometry and elastic
compatibility conditions

Parametrization of the deformation strain tensor involves
the selection of primary and secondary order parameters (OP).
The primary OP quantifies the path along the phase transi-
tion, while secondary OP describes other modes of the elastic
response of the material. We will show later that these OPs
are the suitable variables for the description of the framework
free energy. This free energy is a function of the scalar prod-
ucts of the lattice basis vectors, or elements of the lattice met-
ric tensor. In general, the free energy is expressed through
a certain polynomial of these variables,13, 19, 22, 23 that can be
further approximated by (i) keeping the terms involving only
the primary OP; (ii) approximating the dependence on sec-
ondary OPs by quadratic terms, complying with the standard
linear elastic behavior; and (iii) neglecting all other terms. In
this section, we adopt this approach to the particular problem
considered here.

From the geometrical standpoint, the lp and np phases
of MIL-53 differ mainly by the shape of cells, which can be
characterized by the angle θ of its rhombus cross section; in lp
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FIG. 2. Schematic diagram of the cell cross section for the structural phase
characterization. The green and red frames correspond to the lp (e = −1) and
np (e = +1) phases, respectively. The linker length a is constant.

phase θ ∼ 79◦, while in np phase, θ ∼ 40◦ (Fig. 2). This means
that the primary OP can be described by a scalar related to this
angle. At the same time, the variation in the linker length a be-
tween the two phases is of the order of 0.4 Å (3.8%), making
the length of the rhombus sides essentially invariant upon de-
formation of the structure. In the model presented here, we
will make the assumption that the linker length, a, as well as
the unit cell length in the orthogonal direction, b, are con-
stant and thus we do not consider any secondary OP. This
assumption implies that the deformation of a single cell can
be quantified by just one degree of freedom represented by
the rhombus angle θ , which imposes a strong constraint on
the framework geometry. This conclusion can be formally de-
rived from elastic compatibility conditions, Eq. (3), linking
the deformation strain in neighboring cells.24 Indeed, the nor-
malized lattice vectors are �v1 = �ex , �v2 = cos θ �ex + sin θ �ey ,
and �v3 = �ez. Thus, the only variable components of the met-
ric tensor are g2

12 = cos θ and g1
12 = cos θlp. Thus according

to Eq. (1), the only non-zero strain tensor component is the
shear component ε12,

ε12 = 1

2
(cos θ − cos θlp), (4)

which represents the primary and unique scalar OP.25 The
undistorted phase in this representation corresponds to the lp
phase characterized by ε12 = 0.

It is convenient to define a symmetrized strain e as

ei = −1 + 2
cos θi − cos θlp

cos θnp − cos θlp
(5)

in order to have a symmetric and normalized represen-
tation for the equilibrium values of the strain, that is,
e = −1 for the reference lp phase and e = +1 for
the reference np phase. The cell volume can be ex-
pressed in terms of the symmetrized deformation strain as

Vi = a2b

√
1 − ( cos θnp+cos θlp

2 + cos θnp−cos θlp

2 ei)2, where a is the
linker length and b is the length of the unit cell vector along
the channel (orthogonal to the channel cross section).

Elastic compatibility equations imply that the sum of de-
formations along any close trajectory (loop) in the cell net-
work should be null (Eq. (3)). As such, the compatibility
equations for the three independent loops � in the XZ and ZY

FIG. 3. Schematic representation of the MIL-53 framework after the first
event of lp-np transformation, which involves an in-plane shear of a 2D layer
of cells in a direction orthogonal to the channel axis.

planes of the cell lattice (depicted on Fig. 3) can be written as
∑
�XZ

ei,j,k = 0 : a +
√

a2 − e2
i+1,j,k − a −

√
a2 − e2

i,j,k = 0

⇒ ei,j,k = ei+1,j,k,∑
�ZY

ei,j,k = 0 : a + ei,j+1,k − a − ei,j,k = 0

⇒ ei,j,k = ei,j+1,k. (6)

Trivial equations for the YX plane are omitted because they
do not bring any additional constraint. Equations (6) express
the constraints on the derivatives of the deformation strain
field. Gradients of the deformation strain field must be zero at
any point over the lattice in the directions x and y, and these
can be expressed as

Dxei,j,k = 0

Dyei,j,k = 0.
(7)

Here Di represents the standard discrete partial derivative op-
erator, e.g., Dx ei, j,k = ei+1, j,k − ei, j,k. Equations (7) can
be easily translated in terms of the cross section angle θ as
Dx θ i,j,k = 0 and Dy θ i,j,k = 0. This condition requires the con-
stancy of θ within the XY-plane that reduces the model to one
dimension, since the chosen OP can only vary in Z-direction.

As such, the local elastic compatibility equations give
rise to the long-range elastic interactions, which impose a firm
constraint on cell deformations requiring the similitude of the
cell shapes within the 2D layer of cells in the XY-plane. This
means that the phase transformations occur in a cooperative
manner and necessarily involve the entire layer of cells, all
of which must be in the same phase. As a consequence, the
layer of cells, rather than the single cell, is to be taken as a
basic unit for the framework mechanical model. As such, the
3D framework can be presented as a 1D stack of 2D layers
of identical cells. This makes possible to formulate a 1D min-
imalistic model of the framework deformation that captures
the main system properties with a minimum number of input
parameters.

The above conclusion is the key for the simulation anal-
ysis presented in this paper, and it is worth of additional dis-
cussion in terms of the variation of cell geometry during the
phase transformation. The assumption of the preserved rhom-
bus shape with the fixed side length imposes a strong correla-
tion on the deformation of neighboring cells in order to ensure
the lattice integrity.14 First, the cells along the channel must
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coherently deform as two stacked cells of rhombus shape can-
not match unless they have the same angle θ . Second, the
channels connected by sides of fixed length must possess
equal θ along the shear direction. This defines a 2D layer of
cells, inside which all the channels have the same cross sec-
tion. Mismatch in the rhombus angle can exist along the direc-
tion perpendicular to the shear plane. Thus, the only possible
mechanism of framework deformation is the layer-by-layer
shear and the elementary deformation consists of the shear of
the layer of cells in the direction perpendicular to the channel
axis represented in Fig. 3.

C. 1D model of adsorption in bi-stable framework

Within the proposed 1D model, the two main variables
describe the state of each cell layer at given external thermo-
dynamic conditions. First is the deformation state of the ma-
terial given by the strain field e. The second variable is the
adsorption loading n or the mean number of guest molecules
per unit cell in the layer. By averaging the loading over the
whole framework as a function of the external gas pressure (or
chemical potential), one obtains the adsorption isotherm. This
quantity is the key observable of the system as it is measured
in isothermal adsorption experiments. The experimental ad-
sorption isotherms typically display two sharp yet continuous
transitions from almost empty lp phase to almost fully loaded
np phase and from loaded np phase to loaded lp phase, as
shown in Fig. 1. The loading capacities of both the phases dif-
fer significantly and represent the main quantitative parame-
ters determining the adsorption isotherm behavior. In the pro-
posed minimalistic model, we assume that the loading is dis-
crete and allows for adsorption of either, 0, 1, or 2 molecules
in the cell that correspond to empty cell, the np cell capacity,
and the lp cell capacity, respectively. This simplification can
be easily generalized by introducing additional loading levels,
or by considering adsorption loading as a continuous variable.

The proposed model describes the interplay between
guest adsorption and host framework deformation in terms of
a Hamiltonian that depends on the loading n and strain e fields
and is expressed per unit cell. The Hamiltonian contains two
main terms. The first term accounts for the host energy, while
the second expresses the interaction energy between the host
and the guest particles,

H (n, e) = Hhost(e) + Hhost−guest(n, e). (8)

The explicit form of the host energy is

Hhost(e) =
∑

i

[
c0

2
(ei − si)

2 + �F

2
si + ci

2
(Dei)

2

]
. (9)

The first term on the right-hand side accounts for elastic
deformation of individual cells where the local elastic energy
is modeled as by two parabolic potentials around the undis-
torted np and lp states,26 see Fig. 4; variable si is discrete and
denotes the phase state of the cell (si = −1 in lp phase and si

= +1 in np phase), and (ei − si) is the local deformation from
the reference undistorted state of the respective phase. The
parabolic elastic potential wells are effectively cut to avoid
the unrealistically high energies of intermediate states by in-
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FIG. 4. Schematics of the host free energy landscape for the “dry” bi-stable
framework, as a function of symmetrized strain, e. Two regions of elastic de-
formation around the equilibrium lp and np structures (e = ±1) are approxi-
mated by parabolas. The non-elastic region in-between is taken into account
by introducing a free energy barrier EB in the dynamic model.

troducing the free energy barrier EB that should be crossed in
the course of the phase transformation as discussed in more
detail in Sec. II E. The effective elastic constant c0 is assumed
equal for both phases just for the sake of simplicity. The dif-
ferences in the elastic constants of np and lp phases27 can
be introduced in a more complex version of the model. The
second term �F represents the difference in the free energy
between empty np and empty lp phases, which is positive, re-
flecting the fact that the initial “dry” state corresponds to the
stable lp phase. This energy was estimated within the ther-
modynamic model developed in Ref. 7. The third term cor-
responds to the non-local cell-cell elastic energy proportional
to the strain gradient squared; it penalizes the formation of in-
terfaces between layers of lp and np phases (c1 > 0) by the
interfacial energy of 2c1 and also levels elastic deformations
in neighboring cells of the same phase.

The host-guest energy is expressed as a sum of two terms:

Hhost−guest(n, e) = εa(ni, si) − σa(ni, si) (ei − si) , (10)

which determine the host-guest interactions as the energy
of adsorption εa(ni,si) at given loading ni and deformation
ei expanded around the adsorption energy εa(ni,ei) in non-
deformed reference lp or np state, ei = si. This expression
gives rise to a quantity of prominent physical significance:
the adsorption stress induced on the host framework due to its
interactions with the guest molecules, which is defined as

σa(ni, si) = ∂εa(ni, ei)

∂ei

∣∣∣∣
ei=si ,ni

(11)

in line with the thermodynamic definition of the adsorption
stress. The adsorption stress couples the host-guest interac-
tions with the elastic deformation and accounts for the forces
exerted by the guest molecules on the host framework. It can
be either negative or positive depending on the loading and
thus cause either elastic contraction or expansion. As such,
the number of input parameters characterizing adsorption in
our model is reduced to 8: 4 adsorption energies εa(ni,si) and
4 adsorption stresses σ a(ni,si), ni = 1 or 2, si = ±1.
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D. Discretization of the model

Modeling the dynamics of the coupled adsorption and de-
formation in the process of incremental stepwise variation of
the chemical potential of the adsorbate, we make a further
assumption that the local elastic relaxation of the framework
occurs on a much smaller time scale than the establishment of
adsorption equilibrium. Under this assumption of fast relax-
ation of the elastic degrees of freedom, the total energy should
be at its minimum with respect to the strain field e. As such,
the quasi-equilibrium strain field can be found from the min-
imization of the Hamiltonian at the given discrete state and
loading fields, s and n,

∂H ({ni}, {ei})
∂ek

∣∣∣∣
{ni },{si }

= 0 ∀k. (12)

Since the second derivative is always positive and equal to
c0 > 0,

∂2H ({ni}, {ei})
∂e2

k

∣∣∣∣
{ni },{si }

= c0 ∀k, (13)

the condition of the minimum is trivially satisfied, and thus,
defined strain field would correspond to a mechanically stable
state.

Equation (12) implies zero total stress within the frame-
work while the adsorption stress, Eq. (11), can be different
from zero. The frame must deform in order to satisfy this con-
dition. The assumption of the local elastic equilibrium allows
us to determine the continuous elastic strain field e as a func-
tion of the discrete fields, s and n. That is, the dynamics of
the system is governed by the evolution of the discrete field s
and n that allows for the further simplification of the model.
Due to the quadratic nature of the elastic potential, the mini-
mization, Eq. (12), yields a system of linear equations, which
can be solved in a matrix form to determine the strain field at
given distribution of phases {si} and loadings {ni},

ei =
L∑

k=1

Mik (c0sk − σa(nk, sk)), (14)

where Mik ≡ (c0Iik + c1Hik)−1, where Iik is the identity ma-
trix and Hik is a suitable matrix representation of the strain
gradient term in Eq. (9), i.e., Hik ≡ Ii,k − Ii+1,k − Ii,k+1.

Equation (14) allows one to express the Hamiltonian
given in Eq. (9) and Eq. (10) in terms of the discrete fields
n and s,

H ∗(n, s) = 1

2

L∑
i,j=1

[
c2

0Jij sisj − Mijσa(ni, si)σa(nj , sj )

− 2c0Jij siσa(nj , sj )
]

+
L∑

i=1

[
�F

2
si + εa(ni, si)

]
+ c0L

2
, (15)

where Jij = Iij/c0 − Mij. As such, within the discretized model,
Eq. (15), each cell layer is characterized by its state variables,
si = ±1 and loading ni = 0, 1, or 2. Note that Eq. (15) explic-
itly accounts for the long-range coupling between adsorption
states of different loading in Mij σ a(ni,si) σ a(nj,sj) term; such

coupling term was not present directly in the initial Hamilto-
nian, Eq. (10), but it arises from the elastic interactions due to
adsorption-induced stress and compatibility conditions.

E. Dynamics of the system

In modeling the adsorption process, we performed grand
canonical MC simulations of the 1D array of cell layers with
open (non-periodic) boundary conditions. The external vari-
ables are the size of the system L, the temperature T, and
the chemical potential μ of the adsorbate. Two types of MC
moves, which lead to the change of the cell state are con-
sidered: adsorption or desorption of one particle (ni → ni

± 1) and the phase switch between lp and np structures
(si → −si). The acceptance probabilities W for particle in-
sertions and deletions are standard for the Metropolis MC
scheme:

W (ni → ni ± 1) = min{1, exp[−β(�H ∗ ∓ μ]}, (16)

where β = 1/kBT, and the energy difference �H* has the
following explicit form:

�H ∗ = −�σi

⎛
⎝ L∑

i,j=1;i �=j

Mij

(
σa

j + c0sj

) + c0Jiisi

⎞
⎠

− 1

2
Mii

(
�σa

i

)2 + �εi. (17)

The phase switch attempt implies the transition from one
elastic potential well to the other across the energy barrier
EB, see Fig. 3. The probability of barrier crossing is described
by the following scheme employed by Kang and Weinberg28

in studies of activated diffusion. As such, we introduce the
energy barrier directly in the acceptance probabilities of the
phase change:

W (si → − si) =
⎧⎨
⎩

min(1, exp[−β�H ∗]) if |�H ∗/2| > EB

exp

[
−β

(
�H ∗ + EB

2

)]
if |�H ∗/2| < EB.

(18)

The energy difference associated to the phase change move is
given by

�H ∗ = −c0�si

⎛
⎝ L∑

i,j=1;i �=j

Mij

(
σa

j − c0sj

)+Jiiσi

⎞
⎠

+�εi − si�F. (19)

The probability of phase transition is the same as in
the standard MC scheme presented in Eq. (16) provided
|�H*/2| > EB. Otherwise, Eq. (18) introduces a possibil-
ity for metastable states in the system and, as a conse-
quence, for hysteretic behavior. This statement is visualized in
Fig. 5 where we schematically show all the different possibil-
ities of the transition probability.

Left panels in Fig. 5 correspond to low barriers that do
not affect the transition. Right panels illustrate the possibility
of the metastable states separated by the barrier provided the
latter is high enough. In this case, even when the transition is
associated with the energy reduction, the move is accepted not
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FIG. 5. Schematics representation of the transition between the states and the
effect of the energy barrier. When the barrier is low, the transition probability
is determined from the standard Metropolis scheme (left panels). When the
barrier is high, the transition probability is modified according to Eq. (18)
(right panels).

with a probability equal to one, as in the Metropolis scheme,
but with the probability that accounts for the barrier crossing.

III. RESULTS AND DISCUSSION

A. Obtaining main features of breathing transitions

The minimalistic model reproduces on a qualitative level
the main features of breathing transitions presented above in
Fig. 1, namely the double transition upon adsorption, first
from lp to np and then from np to lp phases. In the exam-
ples of calculations presented below, the adsorption energies
and stresses are chosen to qualitatively reproduce adsorption
isotherms in each phase, taking as a reference 200 K Xe ad-
sorption data.7 As such, each individual adsorption isotherm
is of the IUPAC type I and shows a Langmuir-like behav-
ior. The transitions imply gradual transformation of the sam-
ple from one phase to the other, mechanisms of which are
discussed below. As shown in Ref. 29, the stress developed
in individual phases upon adsorption and desorption is non-
monotonic, featuring contraction and expansion in the course
of adsorption.

Choosing the model parameters, we grouped them in two
categories. The first group of parameters is based on the ex-
perimentally measurable properties, such as elastic constant
c0 (i.e., bulk modulus), adsorption energies (adjusted to re-
produce semi-quantitatively the experimental isotherms), ad-
sorption stress (their sign is known but not their value; how-
ever, their exact values are not crucial to the conclusions of the
model). These parameters are necessarily correlated in order
to reproduce the phenomenology (adsorption energy is larger
in np phase than that in lp phase, etc.). These parameters are
presented in Table I and they are fixed in all the following
calculations.

TABLE I. Values of the fixed parameters in units of kBT.

c0 = 100 �F = 5.0

ε(1,lp) = 0 ε(1,np) = −10 ε(2,lp) = −2 ε(1,np) = 3
σ a(1,lp) = −10 σ a(1,np) = −10 σ a(2,lp) = 10 σ a(1,np) = 10

FIG. 6. Principal features of breathing transitions: adsorption isotherm (red
line), desorption isotherm (blue line), and reversible isotherm obtained by
ignoring the energy barrier EB in simulation (gray). Model parameters from
Table I, coupling parameter c1 = 1.

The parameters given in Table I ensure that at the con-
dition of thermodynamic equilibrium, the adsorption process
will possess a double breathing transition. The equilibrium
isotherm can be calculated on the level of one cell layer ig-
noring the dynamic effects related to the inter-layer coupling
and to the energy barrier of phase transitions. The model pa-
rameters responsible for the dynamics and hysteretic behavior
represent the second group. They include the layer-layer elas-
tic coupling c1, free energy barrier EB, as well as boundary
conditions and system size. These parameters are not directly
related to the experimental observations and are varied in
Secs. II B and II C to demonstrate their impact on the mecha-
nism of breathing transitions.

In Fig. 6, we present typical results of simulation for
L = 2000, EB = 10.5, and c1 = 1 in comparison with the
equilibrium isotherm determined at EB = 0 and c1 = 0. The
adsorption isotherms are given as the average loading 〈n〉
vs the chemical potential μ. The adsorption and desorption
isotherms (top panel) display a prominent hysteresis similar
to the experimentally observed, see Fig. 1. The hysteresis is
also apparent for the stress isotherms 〈σ a〉 (not shown here),
and the evolution of the sample composition characterized by
the fraction of layers in lp phase xlp.11

B. Effect of elastic coupling and free energy barrier
of phase transition

We first consider the system of large size, i.e., in the ther-
modynamic limit. In practice, this is achieved at the length
L = 1000, which was determined by comparison of the re-
sults for systems of increasing size.

The hysteretic behavior is not observed for all values of
the layer-layer elastic interaction parameter c1 and the energy
barrier EB. We performed a systematic study of the region of
hysteresis by varying parameters EB and c1 and constructing
a “phase diagram” separating the equilibrium and hysteretic
regions in parameter space, Fig. 7. In the absence of both
barrier and elastic coupling, the breathing is fully reversible.
By introducing either a large enough layer-layer coupling, or
a large enough energy barrier, or both, the structural transi-
tions become hysteretic. It can be seen that the boundaries
of nonreversible behavior for the two structural transitions
(low-pressure, represented as a dotted line, and high-pressure,
represented as a dashed line) are quite close to each other.
As such, it is possible yet unlikely that in the case of two
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FIG. 7. Presence of hysteresis in breathing transitions depending on model
parameters EB and c1 at the thermodynamic limit. Dotted and dashed lines
represent the limits of the reversible and hysteretic regimes for the low-
pressure and high-pressure transitions, respectively.

breathing transitions, the low-pressure transition would be re-
versible and the high-pressure one hysteretic.

The main conclusion we can draw from Fig. 7 is that
both the free energy barrier and the layer-layer elastic cou-
pling can cause hysteretic structural transformations, which
are observed in all known experimental occurrences of breath-
ing transitions. While it is clear that the energy barrier stabi-
lizes the presence of metastable states, the effect of the elastic
coupling is less straightforward. However, the interlayer cou-
pling (stemming from the cell-cell elastic interactions) penal-
izes the transformation of a single layer of cells in the mate-
rial, and thus plays in the system dynamics a similar role to
the free energy barrier.

In order to characterize the nature of the mechanism of
the hysteretic transition, we present in Fig. 8 the adsorption
and desorption behavior for three characteristic sets of pa-
rameters: top panel (a) no layer-layer coupling and no energy
barrier, (b) with only layer-layer coupling, no energy barrier,
and (c) with only a free energy barrier, no coupling. In each
case, a graphical representation of the system upon adsorp-
tion and desorption is plotted below and above the isotherm.
Our “reference” case here will be the reversible simulation
with c1 = 0 and EB = 0. In this case, the reversible isotherm
stems from a smooth transition of layers from one state to an-
other; the phase distribution in the regions corresponding to
the structural transitions appears as random intermittent do-
mains of lp and np layers. From this no-coupling no-barrier
case, the introduction of a high enough barrier (EB ≥ 9) slows
down the dynamics of the system and allows the creation of
“metastable” states in which domains of the new phase nu-
cleate and grow (panel b of Fig. 8). This is reflected in the
hysteretic nature of the transition. Below this panel we show
zooms on five characteristic distributions of phases, obtained
at labeled points 1–5 along the adsorption isotherm: the first
one shows an empty system in lp phase, with a fluctuation of
a single cluster of np phases; the second one corresponds to
lp-np coexistence; the third one is located between the two
adsorption steps, where the np phase predominates but some
inclusions of empty lp phase and full lp phase are seen; the
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FIG. 8. Adsorption isotherms, 〈n〉 (red curves); phase fraction, xlp (blue
curves) as a function of chemical potential μ. On top and bottom are rep-
resented spatial distribution of phases and loadings, for adsorption (bottom)
and desorption (top), at corresponding μ. Each vertical bar represents the 1D
succession of 2000 layers colored with respect to their states: blue—empty
lp phase; grey - empty np phase; green—np phase with one particle; white—
lp phase with one particle; red—lp phase with two particles; and black—np
phase with two particles (not observed in these simulations). (a) c1 = 0, EB
= 0; (b) c1 = 0, EB = 9; (c) c1 = 8, EB = 0. Panel (b) includes a zoom on
characteristic phase distributions in the system for five labeled points along
the adsorption isotherm.
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FIG. 9. Influence of system size (L = 25, 50, 100, and 2000) on the dynamics of breathing transitions for two dynamic regimes. (Left) Strong elastic coupling.
(Right) Weak elastic coupling. Hysteresis increases with the system size.

fourth case is np-lp coexistence in the region of the second
transition, and the last distribution shows the final state of ad-
sorption, a system of fully loaded lp layers. In the presence of
large elastic layer-layer correlation, and to some extent in the
case of high-energy barriers, hysteresis loops widen as the nu-
cleation rate for the phase transition is reduced. For example,
in the case of EB = 0 and c1 = 8 (lower panel of Fig. 8), we
see that only a few nucleation events occur in the entire sys-
tem (3 events upon adsorption, 4 upon desorption), yielding
fairly steep steps in both the loading and phase composition
isotherms (avalanche effect).

C. Effect of crystalline domain size
on breathing dynamics

The examples discussed above were calculated for a large
system comprised of L = 2000 layers. For such a large sys-
tem, no difference in adsorption hysteretic behavior was ob-
served with periodic and free boundary conditions. Except
for the very last example of the strongest elastic coupling,
Fig. 8(c), the distribution of the new phase nucleation events
was uniform along the system with free boundary conditions.
However, for the adsorption np-lp transition, the influence of
the boundaries is apparent: one may see only three nucleation
events, two at the boundaries and one in the center, and an
avalanche phase growth between them. As the system size de-
creases, the effect of system boundaries becomes stronger. To
study the influence of the system size on the transformation
dynamics, we performed simulations of the systems of vari-
ous sizes L with free boundary conditions.

In Fig. 9, we demonstrate the adsorption isotherms in
the systems of different sizes for two typical cases of strong
(c1 = 6, left panel) and weak (c1 = 2, right panel) interlayer
elastic coupling. The energy barrier, EB = 9, is chosen high
enough to secure the hysteretic behavior in the thermody-
namic limit even in the absence of elastic interaction penalty.
For small size system, the boundary effect is important. In-
deed, the nucleation of the new phase at the boundary implies
a smaller overall free energy penalty, which is a cumulative

effect of the energy barrier and interlayer coupling. The latter
effect is approximately twice as small for the boundary layer
than for the internal one. As such, the phase transformation
tends to start from the boundary and propagates to the center
of the system, as shown in Fig. 10 for np-lp transition in the
strong coupling case. With the decrease in the system size, the
hysteresis progressively shrinks. For the low coupling case,
this effect is more pronounced. The hysteretic behavior is ob-
served in the thermodynamic limit only. For all system sizes
including and below 100, the isotherm is reversible.

Finally, we studied the finite size effects on the position
of breathing transitions (indicated by the chemical potential μ

at which each transition happens) by varying the elastic cou-
pling parameter c1 (here in the range from 1 to 13). This is
done for two different system sizes, L = 25 and L = 100, us-
ing a free energy barrier of EB = 9 and averaging over 500
realizations of the adsorption-desorption cycle. As shown in
Fig. 11, for all values of the elastic coupling except the low-
est one (c1 = 1), the adsorption-desorption isotherms form
two clear hysteresis loops, whose width is characterized by
the difference in the chemical potentials corresponding to the
adsorption and desorption transitions. As described above in
the case of our “thermodynamic limit” (L = 2000), this width
increases with coupling. We also observe that the size ef-
fect is greater for wider hysteresis loops, i.e., for systems
with larger elastic coupling c1. In this case, the larger the
system, the wider the adsorption-desorption hysteresis loop.

FIG. 10. Phase distribution upon adsorption at L = 100 for the strong cou-
pling case. Colors are the same as in Fig. 8. Snapshots averaged over 500 re-
alizations. Np-lp transition (near μ = +6) proceeds as an avalanche starting
from the boundaries, while lp-np transition (near μ = −7) proceeds through
intermittent formation and coalescence of lp phase clusters.
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FIG. 11. The dependence of the transition chemical potentials, μ, on the
elastic coupling parameter c1 for two system sizes, L = 25 and L = 100 at
EB = 9. The lower series corresponds to the 1st hysteresis loop at low μ;
open (L = 25) and filled (L = 100) circles and triangles show the positions
of adsorption and desorption transitions respectively. The upper corresponds
the 2nd hysteresis loop at high μ; open (L = 25) and filled (L = 100) squares
and diamonds show the positions of adsorption and desorption transitions,
respectively. The distance between open and filled symbols represents the
width of the hysteresis loop.

Furthermore, it can be seen that the size effect on the hys-
teresis loop width can be mostly attributed to a shift of the
adsorption branch, while the desorption branch remains unaf-
fected by system size changes (within certain fluctuations).

IV. CONCLUSION

The theoretical description of adsorption-induced struc-
tural transformations in flexible metal-organic frameworks so
far has been mostly focused on structural, energetic, and ther-
modynamic properties at the microscopic level. Empirical ob-
servations have also been discussed, such as the hysteretic na-
ture of these transformations between two metastable phases
and the phase co-existence within the transition region. We
presented a model linking the microscopic behavior on the
level of the unit cell to the dynamics of the adsorption-induced
structural transition on the level of the entire crystal, using
the archetypal MIL-53 “breathing” framework as a case-study
system. We considered the material framework as an elastic
three-dimensional lattice comprised by the unit cells, and in-
troduced a simple Hamiltonian coupling adsorption within the
cells and deformation on the framework level. In doing so,
we first showed that the constraints on the deformations of
the neighboring cells lead to long-range elastic interactions
within 3D lattice. These constraints cause a homogeneous
phase distribution within 2D layers of cells and a layer-by-
layer shear mechanism of the transformation dynamics. As
such, the 3D framework model reduces to a 1D model for a
stack of the cell layers. Secondly, we introduced and studied
a Monte Carlo simulation model of the crystal dynamics. We
showed that this model reproduces the known phenomenol-
ogy of breathing transitions and investigated the influence
of key physical parameters, the free energy barrier of phase
transformation, the cell-cell elastic interaction, and the sys-
tem size on the system hysteretic behavior and the dynamics

of phase nucleation and growth. In particular, we determined
the regions of system parameters, which correspond to re-
versible and hysteretic transformations and identified two dif-
ferent dynamic regimes, intermittent nucleation and growth of
new phase clusters and avalanche-type phase growth from the
crystal boundaries. Our main conclusion regarding the shear
layer-by-layer mechanism of phase transformation and the re-
sults of MC simulation suggest a possibility of np-lp phase
coexistence in the process of breathing transition in one crys-
tal. Such phase coexistence, revealed in experiments,4 may be
enhanced and quenched due to various defects in real systems.
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