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We report here a simple algorithm to create 2D lattice-based models of porous deposits of preformed nanometric particles,
by mimicking to some extent the physics of the actual deposition/aggregation mechanism. The heterogeneous porous
networks obtained exhibit anisotropic properties unlike lattice-based models of porous materials in the existing literature,
such as those of porous Vycor glass. We have then used calculations based on the mean field kinetic theory, in order to study
the thermodynamics and dynamics of fluid adsorption and desorption in these lattice-based porous models. We showcase the
influence of pore heterogeneity on the phase equilibrium of the confined fluid, studying both heterogeneity in pore size
distribution and chemical heterogeneity of the internal surface.
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1. Introduction

When a molecular fluid is confined to spaces of nanoscopic

scale, a generic confinement effect is expected to take

place in addition to the standard interface effect that arises

from the interaction of the fluid molecules with the

confined walls. Both effects may lead to drastic changes in

the structure, dynamics and thermodynamics of the

confined fluid compared to the bulk fluid. In particular,

to understand the confinement of fluids in microporous

(diameter smaller than 2 nm) and mesoporous (2–50 nm)

materials [1] is a very active field of research and has lead

to the development of a large number of numerical

simulation methods with various levels of description of

the material, the adsorbates and their interactions.

At the lower side of the scale, atomistic molecular

simulation methods have been widely used to character-

ise adsorption in microporous materials, including the

structure of the adsorbed phase, the microscopic details

of sorbent/sorbate interactions, dynamics of the adsorbed

fluid and thermodynamics of the adsorption.[2,3] As time

passed, the increase in the available computational power

has allowed researchers to extend this method to larger

scale lengths, and provide atomistically detailed descrip-

tions of fluid adsorption in mesoporous materials.[4] On

the other end of the complexity scale, the family of

methods based on the density functional theory (DFT)

have seen a large development in the field of adsorption

science since the seminal work of Seaton et al. [5]. DFT

(sometimes called classical DFT, in order to separate it

from the quantum chemistry DFT method which focuses

on the electron density) describes the density of the

adsorbed fluid inside mesoscopic pores of ideal

geometry, allowing to shed light into the thermodyn-

amics of adsorption in a large variety of systems as well

as helping interpret experimental adsorption–desorption

isotherms.[6]

At an intermediate scale between molecular simulation

and DFT methods, lattice-based mean field models have

been used for the understanding of adsorption and the

properties of confined fluid.[7] Such approaches allow to

describe non-ideal pore geometries of mesoscopic scale,

without the need for an atomistic description of the porous

material and adsorbate. They can beusednot only to describe

the thermodynamics of adsorption near the equilibrium

but also to allow insight into the near-equilibrium dynamics

of the systems studied using mean field kinetic theory.[8]

These methods, spearheaded in the domain of adsorption by

the group of Peter Monson, have been successfully used to

better understand the nature of adsorption/desorption

hystereses for fluids in various mesoporous materials of

typical geometries (single pores, ‘inkbottle pore’, ‘duct

pore’, closed pores, etc.).[7]

The work presented in this paper has arisen from a

practical issue of fundamental importance: provide a

better understanding of water ebullition in and near porous

solids of complex geometries. In heat exchangers and

steam generators, particles settle and form porous

deposits. The deposition process of particles depends on

multiple factors including pH and surface roughness,[9–

11] and relatively little information is available on the

exact geometrical, topological and chemical character-

istics of these porous deposits. Understanding the effects

of the deposits on evaporation and boiling of water

represents an important issue for steam generator
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operators because such deposits cause a severe reduction

in efficiency particularly in steam generators of power

plants.[12] Moreover, a good comprehension of the

thermodynamics and dynamics of these phenomena is the

key to include them in a higher level modelling of the

system, for example to account for them in multiphasic

computational fluid dynamics.[13]

Our team’s earlier approach to this issue was

experimental, and we mimicked the porous deposits using

a model system made of mono-disperse silica particles to

study evaporation and boiling ofwater confined in the pores

of micro-spheres colloidal silica.[14] In the present

theoretical work, we combine a new method to randomly

generate porous structures by deposition of preformed

nanometric particles, and use lattice-based models to study

the thermodynamics and kinetics of liquid–gas transitions

in these porous spaces of high geometrical and chemical

heterogeneity.

2. Formation of the porous deposits

2.1 Generating porous microstructures: an overview

In the first part of this paper, we describe the method we

have developed to generate lattice-based models of the

porous space created by deposition of nanoscale particles

at a surface immersed in liquid. There are several existing

computational and experimental techniques that have been

described in the literature to produce model represen-

tations of porous materials. Perhaps the most direct

methods are based on experimental 2D images, using

microstructure reconstruction algorithms in order to obtain

plausible 3D structures from a series of 2D micrographs.

[15] These methods have been successfully used in

disordered mesoporous materials with high geometric

heterogeneity, and in particular the very complex structure

of porous Vycor glass.[16] Recent developments of direct

3D imaging techniques, including X-ray microtomogra-

phy or X-ray microscopy, have enabled a more direct

access to the microstructure and pore network geometry

and topology of mesoporous media,[17] and even at the

flow of fluid inside porous media.[18]

In the absence of direct experimental images, it is also

possible to generate plausible microscopic structures of

porous media by the manipulation of random fields, such

as controlled smoothing of random white-noise images.

[19] By playing with the parameters of smoothing and the

number of iterations of the procedure, it is possible to

obtain structures of controlled regularity and porosity.

Finally, a third class of methods for the description are

those that mimic the real physical process of formation of

the actual sample, either in a atomistically detailed manner

or in a more abstract way. For example, Gelb and Gubbins

[20] proposed to use quench molecular dynamics

procedure to mimic the processes by which Vycor glass

and controlled pore glasses are produced. A similar

technique was used more recently for porous carbons.[21]

Monette et al. [22] had in an earlier work proposed a

lattice-based representation using a 3D Ising model with

long-range interactions.

However, the methods described above have been little

applied to the problem of aggregation and deposition of

nanoscopic particles of matter to form mesoporous

structures. The closest cases treated in the literature

concern aerogels and other related high-porous aggregates,

[23,24] and rely mostly on random disposition of spherical

particles. A recent study into the complex microstructure

of cement [25] has shown the importance of describing the

geometrical heterogeneity of the material (in the case of

cement, the polydispersity of the calcium silicate hydrate

aggregates) to correctly reproduce the known macroscopic

properties of the material. In the following sections, we

describe a series of procedures, we propose to generate 2D

lattice-based models of porous aggregates of nanoscopic

particles.

2.2 Initial model of deposition

The first and simplest model we propose is to create porous

networks by random deposition featuring heterogeneous

‘rough’ particles of fixed size and random shape, deposited

iteratively at random on a planar surface. This model is

schematised in Figure 1 and consists of the two following

steps:

(1) Generation of a library of particle shapes (upper

panel of Figure 1): We start by choosing a

maximum particle size, l, and creating a randomly

occupied l £ l lattice (each lattice site is occupied
with probability 0.5). Then, a compact particle is

Figure 1. (Colour online) Scheme of a two-step method to
generate porous networks by random deposition featuring
heterogeneous ‘rough’ particles.
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created from this random lattice by regrouping the

occupied sites in two series of motions: first

horizontally (in a random direction) and then

vertically (again in a random direction). We repeat

this process many times in order to obtain a large

library of randomly shaped particles. Their

diameter varies, but is guaranteed to be smaller

than l. Moreover, given the initial conditions

of the generating algorithm (random occupancy

of the lattice), the mean particle size is

l=
ffiffiffiffiffiffi
2p

p
< 0:4l.

(2) Random deposition of particles (lower panel of

Figure 1): The second step of our model mimics

the deposition of previously formed particles onto

a planar surface. We start with an empty 2D lattice

of dimension L £ H, of which the lowest line is

considered filled (the planar surface). Then,

particles are chosen at random from the previously

created library, and dropped one at a time onto the

surface at a random position. The first particle

drops until it makes contact with the bottom of the

lattice. Further particles will then be dropped in a

similar fashion, except that they may stop their fall

at the first contact with an earlier deposited

particle or with the planar surface. They will then

be frozen in place, much like the irregular falling

blocks in the popular Tetris computer game. This

process results in an irregular porous space

between the particles and is somewhat similar

(although very simplified) to the actual physical

process of particle deposition and aggregation.

To our knowledge, it is the first time that such a

mechanism for building complex and heterogeneous

porous networks is proposed in the literature. Similar

attempts to use Tetris-like lattice movements found in the

literature dealt with stacking of regularly shaped particles

and focused not on the process of aggregation and

formation of porous space, but rather on the compaction of

granular media [26] and its resistance to shear.[27]

Figure 2 provides a quick look at four different

realisations of the random deposition algorithm described

above, with particle size l ¼ 10 and lattice size 50 £ 50.

Clear variations and some common traits can been seen

from this figure. First, the porosity of the resulting lattice

varies among realisations, going from 0.4 to 0.7 depending

on the successive random choices of position for the

particles dropped, i.e. a wide distribution of porosity but

overall high porosities (or low densities). Moreover, the

porous system is clearly heterogeneous, with a combi-

nation of smaller and larger pockets (enclosed porous

voids in our 2D representation) and pores accessible from

the outside. However, even with this heterogeneity, some

characteristic features of the methodology are shared: the

porous system is highly anisotropic, featuring a variable

number of vertical ‘chimneys’ due to the deposition

process; the porous deposits exhibit an overall vertical

gradient in density, being denser near the deposition

surface and more porous at their extremity. All these

features are in good agreement with the very few direct

images available in the literature, such as those from

porous corrosion deposits in Seabrook Pressurized Water

Reactor.[28] These features are in sharp contrast with the

already published methods of generating lattice models of

porous solids, which are all isotropic.

2.3 Refinements of the model

The densities typically obtained from the procedure

described in the previous section are quite low compared

to what direct images suggest, even though no direct local

measurement of density (or porosity) of the real deposits is

available, to our knowledge. We thus derived ways to

obtain a higher density (lower porosity) by amending the

algorithm for the generation of the porous structure.

We used three different modifications:

(1) First, multiple iterations of the generating

algorithms are run, and all those whose density

does not exceed a certain preset threshold are

rejected.

(2) The smaller inaccessible pockets of the porous

system (up to 3 £ 3) are removed, i.e. the

corresponding lattice sites are considered solid.

This mimics the ageing of the porous deposits, in

Figure 2. (Colour online) Four realisations of the porous generation method, with particle size l ¼ 10 and lattice size 50 £ 50.
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which any very sharp feature or small pore would

disappear after sometime due to local dissolution–

recrystallisation.

(3) Instead of using particles of initial size l, we

create a library of particles of size varying

between l ¼ 6 and 12. This increases the

polydispersity and thus the density of the

aggregate.[25]

(4) Finally, we amended the Tetris-like random

deposition model by adding a condition on the

size of the particle–deposit contact area, as a very

simple way to account for possible particle

resuspension in the fluid. With this condition, we

consider that particles deposited onto the already

formed deposit, but with only a small area of

contact with it, would lack sufficient adhesion

forces to stick and be resuspended into the

solution. Thus, we added the following condition:

after a new particle is dropped onto the deposit, if

its number of contacts with the existing surface (in

units of lattice edges) is lower than 3, the particle

is removed before the next one is added.

By combining these four modifications of the

algorithm, we were able to grow denser heterogeneous

porous networks, with porosities down to 0.2 (density of

0.8), while keeping the characteristic features we wanted

in the model: anisotropy and existence of density gradient.

We have then performed simulations on the lattice models

obtained, as described in the following sections.

3. Adsorption on these lattice models

In order to study the behaviour of fluid inside our

heterogeneous porous space, the effects of the confinement

on the fluid’s thermodynamics and the dynamics of its

phase transition, we used a lattice-based model. In order to

keep computational costs reasonable on the large systems

that we are interested in, we decided on a mean field

approach and followed the mean field kinetic theory

(MFKT) equations as applied to a lattice gas model under

confinement, using the formalism set forth by Monson [8]

(and similar to the presentation of Gouyet et al.[29]). Later

work by Monson and other groups has shown that it is

widely applicable to adsorption and desorption in model

geometries,[30,31] and has been used to help understand

the wetting and drying phenomena in porous media.

[32,33]

3.1 The method: mean field kinetic theory

The basis for the mean field kinetic theory is a 2D lattice

gas model: in such a model, each site of a 2D square lattice

is either filled with solid, liquid or vapour. In the nearest

neighbour approximation, a Hamiltonian can be con-

structed by summing up the energy over pairs of

neighbours, by neglecting many body effects (which

could be incorporated in a more refined Hamiltonian).

In this model, the solid is immovable and acts as both an

inaccessible volume (that the fluid cannot enter) and an

external field on neighbouring sites. The simplest

Hamiltonian that can be constructed assigns an energy

2e ff for two neighbouring sites occupied by the liquid,

and an energy2e sf for neighbouring liquid and solid sites.
Gas–gas, gas–liquid and gas–solid interactions are taken

as zero, and Hamiltonian can be written as

H ¼ 2
1

2
e ff

X
i

X
a

nina 2 e sf
X
i

nifi; ð1Þ

where i runs over all non-solid sites of the lattice, a runs

over the nearest neighbours of i (Figure S1 available via

the article website), ni indicates the fluid occupancy of a

site (0 for gas, 1 for liquid) and fi denotes the number of

neighbouring sites occupied by a solid.

In the mean field approximation, we take as key

variable not the occupancy of each site ni, but the mean

fluid density ri. The Helmholtz energy for the system is

then given by

F ¼ kT
X
i

ri ln ri þ ð12 riÞ ln ð12 riÞ
� �

2
1

2
e ff

X
i

X
a

rira 2 e sf
X
i

rifi: ð2Þ

The distribution of fluid at the equilibrium with a given

chemical potential m is then given by the following self-

consistent equation [8]:

1

ri
¼ 1þ exp 2

m2 e ff
P

a ra 2 e sffi

kT

� �
: ð3Þ

Resolution of this equation by iterating from a given set of

initial conditions yields the steady state of the system, i.e.

its density in the limit of infinite time. This steady state is

not necessarily the thermodynamic equilibrium of the

system and may correspond (depending on the initial

conditions) on a metastable state. We use these ‘static’

calculations to obtain adsorption and desorption isotherms

of fluid in the porous space.

In addition to the static calculations, Monson [8]

showed that the dynamics of the system out of the steady

state could be described by the mean field kinetic

equations. In these equations, the evolution of density in

each site is linked to the flow of particles between

neighbouring sites Jia by

dri
dt

¼ 2
X
a

Jia: ð4Þ
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Considering a Kawasaki dynamics with Metropolis

transition probabilities in the mean field approximation,

Monson demonstrated that the flux can be written as

Jia ¼ w0 exp
2Eia

kT

� �
rið12 rjÞ

2 w0 exp
2Eai

kT

� �
rjð12 riÞ; ð5Þ

where Eia ¼ max 0;Ea 2 Ei

� �
and w0 is the jump rate

between neighbouring sites in the absence of interactions.

It sets the timescale of the dynamics.

In the following sections, we use static and dynamic

MFKT calculations to study the influence of confinement

in complex heterogeneous pores on liquid–gas phase

transitions.

3.2 Results in complex porous network:
static calculations

We start by characterising adsorption and desorption in a

porous deposit constructed by the algorithm presented

above, on a 100 £ 100 lattice with overall porosity of 0.3

(density of 0.7). We illustrate this behaviour in the case of

a hydrophilic solid, i.e. one for which the fluid–wall

interaction is more important than fluid–fluid interactions;

we took values of e ff ¼ kT and e sf ¼ 3e ff . Static

calculations for adsorption (respectively desorption)

isotherms were performed by successive small increments

(respectively decrements) of the activity l ¼ expðm=kTÞ,
which we assimilate to the fluid pressure (l . P) in the

following for simplicity of the discussion.

The upper panel of Figure 3 presents the adsorption

and desorption isotherms, while the lower panel is

composed of snapshots of the system at specific points in

the isotherms. Two regions are clearly present in the

isotherms: a reversible uptake up to P=P0 ¼ 0:5, then a

marked step in the isotherms coupled with a wide

hysteresis loop. This behaviour is markedly different from

that of adsorption–desorption in a slit pore of similar

average dimension H and finite length L (whose isotherms

are depicted in Figure S2 (available via the article

website), forH ¼ 6 and L ¼ 20). In the case of the slit pore

of relatively small size, as detailed for example in Ref. [8],

there are two steps: the first associated with the formation

of a monolayer of fluid on the walls, and the second

associated with the metastability of liquid and vapour

states in the pore. Both features are clearly different

between the model slit pore and our complex porous

system. The initial part of the isotherm in the latter case

does not feature a step, but rather a Langmuir-type uptake

Figure 3. (Colour online) Upper panel: adsorption and desorption isotherms from static calculations on a disordered pore system. Lower
panel: snapshots of the system at relative pressures of P=P 0 ¼ 0:2, 0.64, 0.65, 0.9 and 1; red ¼ solid, greyscale indicates the fluid density
(light grey ¼ vapour, black ¼ liquid).
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at P=P0 , 0:5: this corresponds to the filling of the

smaller pores of the system, some of which are of much

lower size than the average pore size. Thus, the pore size

heterogeneity and the presence of some very small pores

account for the large attraction of the fluid by the porous

deposit at low pressure. At higher pressure, the hysteresis

loop between adsorption and desorption branches is both

quantitatively and qualitatively different from that of the

slit pore. First, because of the pore size heterogeneity, it is

wider. Second, instead of two almost vertical transitions,

we observe a quite smooth adsorption branch and a steeper

(but not vertical) desorption branch. Again, this stems

from the large pore size distribution, which leads to

rounding because adsorption in different pores happens at

different pressure. Moreover, the dissymmetry between

adsorption and desorption branches clearly reflects the

different nature of pore filling and emptying, as seen in the

snapshots (lower panel of Figure 3) in the middle of

the hysteresis. The desorption branch is steeper than the

adsorption branch, because the mechanism for pore

emptying is not the same as pore filling: during pore

filling, the adsorbed film on the walls grows until both

sides join; upon pore emptying, an interface (meniscus) is

formed which then quickly recedes, leading to a sharper

transition.

3.3 Results in complex porous network: dynamics

In order to better understand the effect of porous network

heterogeneity on the liquid–vapour transition, we

performed dynamic MFKT calculations. We highlight

here one specific example of such, in which a porous

deposit of low density featuring long vertical chimney-like

pores (see Figure 4), initially filled with vapour, is

surrounded by liquid at time t ¼ 0. In this figure, we report

the time evolution of the density inside the pores as well as

snapshots of the system at different times. First, we see

that not all the pores of our 2D model are filled: the porous

space includes some closed ‘pockets’, inaccessible from

the outside. While, in a static equilibrium calculation,

these are filled, the fluid obviously cannot flow into them

during our dynamics. This effect, which accounts for the

low density (r ¼ 0:61) reached at t!1, is particularly

visible because our model is 2D and the connectivity of

each site is only four. Apart from this, we see that the

dynamics of pore filling is actually pretty homogeneous,

with two different timescales: the initial filling of the outer

regions of the porosity (up to r . 0:3) happens very

rapidly (simulation time of wt # 200), while the gradual

filling of the accessible interior pores happens gradually

and more slowly, with the longer pores being the longer to

be fully filled. Overall, the dynamics of pore filling is

pretty featureless, and much more gradual that the steeped

uptake dynamics typically reported for simple pore

geometries.[7,8]

3.4 Chemically heterogeneous pores

We focus in this section on porous materials whose

heterogeneity comes not only from their topology but also

from the chemical nature of their accessible surface. First,

we showcase the method on a simple model of mixed

hydrophobic–hydrophilic material: a 2D slit pore with

checkered surface, i.e. series of alternating hydrophobic

and hydrophilic domains of fixed size (see Figure 5 for

illustration). We performed static calculations of adsorp-

tion and desorption isotherms on systems with increasing

domain size, with wall–fluid interactions equal to e sf ¼
3e ff for the hydrophilic domains and e sf ¼ 0 for the

hydrophobic domains, and a slit pore height of H ¼ 6.

For domain sizes larger than or equal to 5, we observe a

three-step adsorption (and corresponding three-step

desorption), with (i) formation of a layer atop the

hydrophilic domains; (ii) bridging of the opposite domains

to form a fluid film; (iii) junction of the neighbouring

bridges to fill the whole pore, with lower fluid density

directly atop the hydrophobic domains (see Figure 5).

However, for small domain sizes (compared to slit pore

height), this effect is not seen and the checkered surface

behave as a globally ‘neutral’ with respect to water, i.e.

Figure 4. (Colour online) Left: fluid uptake during dynamics of pore filling, as a function of simulation time wt. Right: snapshots of the
porous system during pore filling (left to right, top to bottom).
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neither hydrophilic nor hydrophobic: after adsorption of

the first monolayer on the top of hydrophilic domains

(local effect), adsorption happens in one steep transition

corresponding to homogeneous filling of the pore. The

adsorption–desorption isotherms display a broad hyster-

esis around P ¼ P0. These findings confirm the suitability

of the method used to treat such questions and exemplify

the diversity of behaviours that can arise from chemical

heterogeneity in pore surfaces, even in the case of the

relatively simple slit pore.

Finally, we wanted to see the effect of a combination of

geometrical and chemical heterogeneity in a truly complex

porous deposit. We thus amended the Tetris-like deposition

algorithm in order to produce some deposits that would

include both hydrophobic and hydrophilic nanoparticles

(in an equimolar mixture). We retained the identity of each

of the aggregated particles in the final porous network,

yielding amixedhydrophobic–hydrophilic porous network

with complex geometry (depicted in Figure 6). Our initial

results on this system include a series of static adsorption

and desorption calculations, whose isotherms are plotted in

Figure 6 alongwith some snapshots of the system at various

points during adsorption (top) and desorption (bottom).

First, we see that low-pressure adsorption is unaffected by

the heterogeneity: reversible adsorption of a first layer of

fluid on the hydrophilic domains. The only difference in that

part is that its absolute uptake is scaled down by a factor of

nearly 2, accounting for the reduced hydrophilic accessible

surface area. However, the higher pressure hysteresis loop

in the adsorption–desorption isotherms is pretty different

from the purely hydrophilic case (compare Figure 6 with

Figure 3). Overall, the transition is pushed to higher

pressure, near P ¼ P0, reflecting an overall neutral

character of the pore surfaces. Moreover, both the

adsorption and desorption branches are now rather smooth,

instead of the steep desorption branch of Figure 3. This

demonstrates that the presence of the hydrophobic domains

in the composite deposit has modified themechanism of the

desorption transition.We can see clearly in Figure 6 that the

random occurrence of neighbouring hydrophilic domains

leads to the persistence of liquid films bridging them upon

desorption, something that does not occur in the pore system

with homogeneous surface. Further work now needs to

focus on characterising the pore filling and pore emptying

dynamics of this complex system, in order to see whether

this equilibrium behaviour persists.

Figure 5. (Colour online) Adsorption and desorption isotherms and the corresponding snapshots on a checkered hydrophobic–
hydrophilic slit pore (see text for details). Left: each domain has length 2; right: each domain has length 5. Key for snapshot colours:
red ¼ hydrophilic solid, green ¼ hydrophobic solid, greyscale indicates fluid density (light grey ¼ vapour, black ¼ liquid).
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4. Conclusions

In conclusion, we have constructed a simple algorithm to

create 2D lattice-based models of porous deposits of

preformed nanometric particles, by mimicking to some

extent the physics of the actual deposition/aggregation

mechanism. The heterogeneous porous networks obtained

exhibit anisotropic properties unlike lattice-based models

of porous materials demonstrated in the literature, such as

those of porous Vycor glass. We have then used

calculations based on the mean field kinetic theory, in

order to study the thermodynamics and dynamics of fluid

adsorption and desorption in these lattice-based porous

models. We showcase the drastic influence of pore

heterogeneity on the phase equilibrium of the confined

fluid, with a focus on two different kinds of heterogeneity:

the complex pore geometry and topology, and the

chemical heterogeneity (hydrophobicity and hydrophili-

city) of the internal surface of the porous deposits. Some of

the perspectives opened by this work include some

refinements of the model construction algorithm, such as

the extension to 3D systems (at the price of much larger

computational resources for adsorption studies) and the

simulation of an ageing (or ripening) of the material, akin

to the experimental dissolution–recrystallisation phenom-

enon. Regarding the dynamics of the pore filling and

emptying, we currently have seen relatively little influence

of the pore heterogeneity on the mean field dynamics: it

would be worth researching whether this can lead to larger

effects in individual events, for example by actually

running many realisations of individual Kawasaki

dynamics of the system.
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[9] Cerovic L, Lefèvre G, Jaubertie A, Fedoroff M, Milomjic S.

Deposition of hematite particles on polypropylene walls in dynamic

conditions. J Colloid Interface Sci. 2009;330:284.
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