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The last decade has seen an explosion of the family
of framework materials and their study, from both
the experimental and computational points of view.
We propose here a short highlight of the current state
of methodologies for modelling framework materials
at multiple scales, putting together a brief review of
new methods and recent endeavours in this area, as
well as outlining some of the open challenges in this
field. We will detail advances in atomistic simulation
methods, the development of material databases and
the growing use of machine learning for the prediction
of properties.

This article is part of the theme issue
‘Mineralomimesis: natural and synthetic frameworks
in science and technology’.

1. Introduction
Nanoporous materials with high specific surface area
are extensively used in a wide range of applications,
including catalysis, ion exchange, gas storage, gas or
liquid separations, sensing and detection, electronics and
drug delivery. The last 15 years have seen the emergence
of entire new classes of crystalline nanoporous materials,
based on weaker bonds (coordination bonds, π–π

stacking, hydrogen bonds, . . .). The most studied of these
new materials are the metal-organic frameworks (MOFs):
these nanoporous hybrid organic–inorganic materials,
built from metal centres interconnected by organic
linkers, have been the subject of an intensive research
effort since the pioneering work done by R. Robson in the
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1990s, with thousands of structures synthesized. Other classes of crystalline nanoporous materials
that have emerged in the past decade include covalent organic frameworks, porous molecular
organic solids and other porous molecular framework materials.

Among these nanoporous materials, an interesting family of materials has recently started to
emerge, named ‘stimuli-responsive materials’ or ‘soft porous crystals’ [1], which exhibit large
or anomalous responses to external physical or chemical stimulation [2]. These modifications
of framework structure and pore dimensions also involve, in turn, a modification of other
physical and chemical properties, making such materials multifunctional (or ‘smart materials’).
Stimuli-reactive crystals include a wide diversity of eye-catching phenomena such as negative
adsorption [3], negative linear compressibility or negative area compressibility [4], pressure-
induced bond rearrangement and framework topology changes [5], photoresponsive frameworks
[6] and intrusion-induced polymorphism [7], to name a few. Each of these properties can be
leveraged for applications in several fields, for example to make sensors and actuators, to
store mechanical energy, to engineer composite materials with targeted mechanical and thermal
properties, etc.

Soft framework materials, because they are built from weaker interactions, have large-scale
complex supramolecular architectures, and can exhibit many dynamic phenomena such as those
just described, are a particular challenge in terms of computational modelling. Compared to
‘traditional’ dense materials, such as oxides, they can require additional computational power
(due to the increased time and length scales involved), or even novel simulation methodologies.
In this paper, we propose a brief review of new methods and recent endeavours in this area, of
the perspectives opened, as well as outline some of the open challenges in this field. We will first
detail recent advances in atomistic simulation methods for framework materials, going beyond
structural properties of perfect crystals to address their behaviour under stimulation and in a
large range of working conditions, as well as the emergence of defects and disordered phases.
We will then highlight the recent development of material databases, and within this the specific
place of framework materials. Finally, our last section will focus on the growing use of machine
learning techniques for the prediction of complex material structures and properties.

2. Computational methods for framework materials

(a) Classical and ab initio simulations
If one wants to understand the properties and behaviour of a crystalline material using
computational methods, the usual starting point is to compute ‘static’ properties of the perfect
infinite crystal, using quantum chemistry methods, such as Kohn–Sham density functional theory.
Starting from an energy-minimized (relaxed) structure, researchers can then compute zero Kelvin
properties, at or around that energy minimum: structural and electronic properties, such as the
band gap and the band structure; vibrations of the atoms around their equilibrium position,
computed as phonons; and infinitesimal deformations of the system can yield elastic properties.
For ‘traditional’ materials, such as oxides, metallic alloys or other dense inorganic materials,
most of the behaviour and properties of a system can be computed using such methodology.
In stark contrast, for complex framework materials with highly dynamic behaviour, this might
not be enough and one has to resort to more complex and more demanding simulation methods.
Specifically, for soft porous materials, their dynamic properties and response to various external
stimuli play a crucial part in their properties and possible applications. In this case, exploring
the behaviour of the system in the vicinity of its energy-minimal structure is not sufficient, and
molecular dynamics (MD) simulations can be necessary to adequately describe the behaviour of
the material—as well as providing important insights into the atomistic processes governing the
macroscopic behaviour.

The so-called classical MD simulations, relying on parameterized force-fields to represent
intra- and intermolecular interactions, have the advantage of being usable for big simulations,
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either in the duration of the simulated events or the size of the system. This means that we
can study rare events such as crystal nucleation or reactions—as well as systems where a large
simulation box is needed, for example the effects of disorder and defects (a topic which we will
discuss more below). The issue here is that there are very few reliable, well-tested and transferable
force-fields for use with framework materials. One has to choose between: (i) force fields derived
for a single material, which describe the potential energy surface of the system with high accuracy,
but are not transferable to other materials; (ii) generic force-fields, whose analytical expressions
and parameters are transferable among a large class of material, but that poorly reproduce
physical properties. The second approach has been widely used, by relying on generic force-fields
such as AMBER [8] or UFF [9]—possibly with adjustments or extensions—to get a consistent
treatment of all frameworks, and therefore to compare different materials when searching out the
best candidate for a given application in high-throughput studies [10–12]. One problem arising
from this approach is that these force-fields might not contain adequate terms to describe the
delicate balance of intra- and intermolecular interactions in framework materials. In particular,
one can think of the metal coordination bonds, π–π stacking and other soft intermolecular
interactions. On the other hand, deriving new force-fields for a specific systems, while useful to
investigate the behaviour of a given material thanks to higher accuracy of the potential energy
surface, fails to allow for comparisons with other systems and is not suitable for large-scale
screening.

Another choice of methodology is to use an ab initio description of the interactions in the
system, where a quantum chemistry method is used at every time step of the MD simulation—
this approach is also called first-principles molecular dynamics (FPMD). This has a much higher
computational cost, and thus limits the length and time scales that can be reached, but does not
make any assumption on the nature of the interactions. This was used by Chaplais et al. [13] to
describe how the adsorbed phase arranges inside a fully flexible ZIF-8, without needing to create
a classical force-field that would be able to reproduce the full flexibility of ZIF-8. Furthermore,
FPMD allows the description of bond breaking and formation, which can be crucial in some
dynamic phenomena: as an example, Howe et al. [14] used it to analyse the stability of MOFs
in the presence of water.

We note that the question of the ‘level of description’ applied to the systems (quantum
chemistry versus empirical potentials) is relevant not only for MD but also for Monte Carlo
simulations, which stochastically generate representative configurations of the system in a given
thermodynamic ensemble, by the application of random moves weighted by the appropriate
Boltzmann probabilities. However, while ab initio Monte Carlo simulations are possible, the large
number of energy evaluations necessary make them relatively rare in the literature [15,16]. In
the context of framework materials, Monte Carlo simulations are used at various scales. First,
simulated annealing and biased Monte Carlo simulations are extensively used in the areas of
structure solution and for localization of extra-framework ions and adsorbed species [17,18].
Secondly, Grand Canonical Monte Carlo is very often used to describe the thermodynamics
of adsorption of fluids and fluid mixtures in nanoporous frameworks [19]. Finally, mesoscale
Monte Carlo modelling methods can be used to assess the large-scale ordering (or disorder) in
supramolecular frameworks, based on carefully constructed Hamiltonians that describe the local
interactions [20–22].

(b) Make force-fields great again
Despite the rather strong limitations of force-fields described above for their application to
framework materials, there have been several recent developments in that area, which we want
to highlight here. Deriving a new force-field for a material is a hard and long task, where one
needs not only to gather or generate reference data, but also to adapt parameters and check every
time that the physical properties predicted by the force-field are right. In the past few years, novel
methodologies for force-field fitting have been proposed, relying on machine learning algorithms.
They aim to make the process more automatic, more reproducible, and also reduce its reliance on
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human input. Starting from the structure optimized with ab initio calculations and the Hessian at
this energy minimum, a machine-learning procedure (for example, a genetic algorithm coupled
with a least-squares minimization) finds the optimal set of parameters matching the structure
and the Hessian. Some implementations of this idea are the MOF-FF [23] and QuickFF [24]
force-fields—or maybe more accurately, force-field optimization methodologies. While they use
slightly different input data and fitting procedures, they share the common goal of parameterizing
force-fields in a systematic and consistent fashion, from first-principles reference data.

To give an example of the use of these new force-field methodologies, MOF-FF was recently
used to predict the most stable structure and topology for copper paddle-wheel MOFs depending
on the linker [25]. The authors generated all the structure by combining simple building blocks
(linkers and copper paddle-wheel) with different topologies, and were then able to use the same
force-field to optimize and study them all. Finally, we note that these methods were originally
developed by relying on reference data gathered on (finite) clusters representative of the MOF
structures, and were later extended to periodic input data. The use of periodic structures as
a reference was shown to be essential for a correct description of structural, vibrational and
thermodynamic properties of soft framework materials like MIL53(Al) by QuickFF [26].

Despite this progress, classical force-fields remain fundamentally limited by the analytical
form they choose to represent interactions, even when parameterized in an optimal fashion. For
example, a force-field using a Lennard–Jones dispersion potential will be unable to reproduce
any long-range interaction that does not follow this functional form. A promising alternative,
in order to be able to reproduce any possible interaction profile coming from the reference
data (i.e. quantum chemistry calculations), is the use of neural-networks force-field. Neural
networks are algorithms that map a set of input values to a set of output values by associating
adjustable weights with each value, and then using a nonlinear function (called the activation
function) to map the weighted inputs to the outputs. If the outputs are then fed to another
neural network, the resulting network is said to have multiple layers—see figure 1 for a
graphical representation with three layers. One property of neural networks is their ability
to reproduce arbitrary multidimensional R

n → R
m functions with arbitrary accuracy [27]. This

makes them very appealing to reproduce energy or forces from ab initio calculations, using only
the atomic position as input—effectively functioning like a force-field, without any assumptions
on the nature of the interactions. Before being usable, the network must be ‘trained’ with data
representative of the system of interest. During this training, the weights are adapted to ensure
a correct mapping from the input (the atomic positions) to the output (forces and energy). Using
atomic positions in Cartesian coordinates as the input is not optimal, as the generated network
will only be usable with the exact same system used for training. An alternative is to rely solely
on the local environment of an atom up to a cutoff distance, represented in a translation and
rotation-independent manner [28]. Neural network force-fields are a very promising approach
to cheap simulation with high accuracy, and they are already used for small organic molecules
[29], water [30,31]; as well as classical dense crystalline materials [32], and amorphous inorganic
materials [33,34]. They are especially helpful with amorphous materials such as silicon or glasses,
where the usual classical potential are complex multi-body potentials. This approach still remains
to be extended to porous frameworks materials.

(c) Simulating complex systems
One of the biggest current challenges in the simulation of framework materials lies in the
complexity of these systems. The computational cost of our tools imposes limits on the systems
we can model, in terms of length scale (and thus number of atoms) and time scales. For
crystalline phases, the use of periodic boundary conditions, where the simulated system is
repeated in all spatial dimensions, is a very effective way to describe infinite systems within
computers with limited memory and CPUs. However, this approach falls short when we want
to study phenomena involving large correlation lengths, such as dynamic properties of soft
materials. Another difficult area is the computational modelling of disordered phases, where
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a very large simulation box would be necessary to correctly describe the system. Yet, within
the field of framework materials, such disordered systems are attracting a lot of interest due
to their properties that differ from their crystalline counterparts. We can here cite as examples
systems such as MOF glasses [35–37] and liquids [38], or framework materials with defects and
correlated disorder [39]. There is thus an important drive to model these materials, because
of their properties (e.g. amorphous phases can have more appealing mechanical and optical
properties than crystals) or because catalysis, nucleation or adsorption can occur preferentially
around defects.

A strategy that can be used in this case—if the brute force approach of using a very large
simulation box is not feasible—is to use multiple realizations (or ‘copies’) of the system of interest,
and average the measured properties over those replicas. This approach has been extensively
used in the past for the study of amorphous systems such as silica glasses or disordered carbons.
For example, Van Ginhoven et al. [40] used DFT calculations on 18 different configurations of
silica glass created using a classical force-field, and were thus able to obtain a good statistical
representation of static and dynamic properties with comparable or better accuracy than a longer,
bigger simulation (figure 2).

Another strategy to study large-scale systems is to change the level of description, moving
closer to mesoscopic methods and using coarse-grained force-fields instead of atomistic ones.
Dürholt et al. [41] have generated such a coarse-grained force-field for the HKUST-1 MOF,
based on copper paddle-wheels. These authors showed that even a very coarse model is able
to reproduce the low-energy deformations of the system, with only one coarse-grained bead
for 30 atoms. Another mesoscopic approach, in the field of adsorption, is the use of Lattice
Boltzmann methods to describe the coupling between fluid flow and adsorption in porous media
with complex geometries [42].

Beyond this scale, it can also be useful to turn to macroscopic modelling methods to simulate
even larger systems. Indeed, many potential applications of framework materials are based on
their use not as single crystals, but are expect to construct nanostructured or composite systems:
common examples include monoliths, supported thin films and mixed-matrix membranes. In
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Figure 2. Ring size distribution in silica glass, as computed from 18 small (72 atoms) replicas, or a single big (1497 atoms)
simulation. Reprinted with permission from [40]. Copyright c© 2005 by the American Physical Society.

order to describe these composite systems, one has to turn to conventional microscopic modelling
methods: finite elements for solid mechanics, computational fluid dynamics to describe transport,
etc. In this vein, Evans et al. [43] used a macroscopic description and finite-element methods to
compute deformation properties of mixed-matrix membrane and other composite of framework
materials and polymers. The use of finite-element methods allowed them to study sizes up to
400 µm, which is five orders of magnitude bigger than typical atomistic simulations.

Finally, we note that while we are starting to see new techniques and methods that go from one
level of description to the next (quantum to classical, micro to meso, meso to macro), the bridging
of those various scales of simulations into a coherent multi-scale simulation methodology is still
a widely open research question. How can one use data from ab initio simulation to fit atomistic
classical force-field? [23,44] Or leverage force-field-based data to create a coarse-grained model?
[41] Or transfer microscopic properties into input for a finite-element method? [43,45] Every time
we go up a level of description, we are able to work with bigger systems at longer timescales, at
the cost of some accuracy and precision, but we still lack a systematic way to create and validate
these novel models for performance and accuracy.

(d) Describing excited states
We note here that a particularly challenging area of the modelling of framework materials is
that of the description of their excited states, in order to better understand, e.g. their optical
properties and photocatalytic activity. Such phenomena involve transitions between the system’s
ground state and another state of higher energy (the excited state) upon photon absorption
or emission. The energy difference involved in the electronic transitions is directly related to
the position of absorption and emission bands. Theoretical models can give insight into the
properties of electronically excited states, and are therefore a useful complement to experimental
measurements. In that framework, density functional theory (DFT), and more precisely its time-
dependent form (TD-DFT) [46,47], is the ab initio method of choice for most of the cases [48,49], as
it may treat structures containing up to ca 300 atoms. To study framework materials, Wilbraham
et al. have developed a computational protocol in order to simulate the optical signatures
of two MOF structures based on the 4,4′-bis((3,5-dimethyl-1H-pyrazol-4-yl)methyl)-biphenyl
(H2DMPMB) linker. The developed protocol was successfully applied to characterize and to
rationalize the adsorption and the emission behaviour on the interchange of zinc and cadmium
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as metal cation [48]. Another important optical property in hybrid materials is the nature of the
electronic excitations that could present ligand-to-metal charge transfer (LMCT) characteristics.
Very recently, Wu et al. showed that from different cations, electronic excitations occur in the linker
of the UiO-66(Ce) MOF upon light absorption. These authors showed that incorporation of the
cerium cation presents an effective way not only to stabilize the LMCT, but also to increase the
photocatalytic activity of UiO-66 MOF [49]. For applications in photocatalysis, the magnitude of
the band gap and the absolute positions of the band edges are of high importance [50,51]. As an
example, based on the mixing of organic linkers, Ricardo et al. have designed new ZIF materials
with a narrower band gap in order to allow the absorption of the visible range solar spectrum.
They showed that by introducing a transition metal (copper) in the tetrahedral position of the
mixed-linker ZIFs, it is possible to increase photo-adsorption [51].

3. Material databases
As stated in the introduction, the last decade has seen an important increase in the number of
studies on various families of framework materials, with the goal of discovering or designing
novel materials with targeted properties. Given the large number of materials synthesized,
characterized and reported, three important series of questions arise:

(i) Where and how is the information on these materials stored? What are the available data?
(ii) Under what form is it stored, how can it be queried, retrieved and interpreted? That is,

issues of Application Programming Interface (API), format and interoperability.
(iii) What is the extent of information and properties provided for each structure? How were

they determined? Those are questions about the metadata associated with each structure.

In this section, we will briefly review the current state of the art and describe some of the existing
material databases for framework materials, contrasting the situation with that of inorganic
materials.

(a) Zeolites
Let us start with the grandparent of this family of databases, namely the database of zeolite
structures from the International Zeolite Association (IZA), which is freely available on the
Internet at http://www.iza-structure.org/databases/. Most of the information is also available
in the printed form, as the Atlas of zeolite framework types book [52]. Zeolites belong to the
class of nanoporous materials and are composed of oxygen, silicon and aluminium. They have
widespread applications at the industrial level in the fields of catalysis, adsorption and separation
[53–56]. At the current date, the corresponding database provides structural information for 230
zeolite framework types reported experimentally, among which 67 are natural zeolites. Ten years
ago, only 176 zeolite frameworks were known, showing that even among ‘conventional’ porous
materials, progress is steady and the synthesis of new zeolites remains a considerable challenge.
The IZA database is heavily curated, as all the zeolitic structures it includes have been approved
by the Structure Commission of the IZA, to verify that it is unique and that the structure has been
satisfactorily proved.

The nomenclature for these materials is recognized by IUPAC (the International Union of
Pure and Applied Chemistry) and is assigned by a three letter code—such as FAU, for the
faujasite framework, or MOR for the mordenite framework. Data associated with each framework
type code include crystallographic data: space group, cell parameters, positions of vertices in
the idealized framework, but also topological density, ring size, channel dimensions, maximum
diameter of an included sphere, accessible volume and composite-building units. Moreover, going
beyond idealized framework structure and topological properties, the database features detailed
information for building models, and simulated powder diffraction patterns for representative
materials, as well as all corresponding literature references.

http://www.iza-structure.org/databases/
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At this stage, the reader unfamiliar with zeolites may be surprised that only 230 zeolitic
structures have been identified experimentally. Indeed, at the molecular scale, zeolites are
constituted of TO4 tetrahedra (where typically T = Al or Si), connected by their corners. It is
mathematically possible to create an infinite number of such four-connected nets that have three-
dimensional periodicity. The question of why only a few structures are experimentally realized,
known as ‘zeolite feasibility’, is still wide open [57,58]. Nevertheless, researchers have used
theoretical and computational tools to develop databases of hypothetical zeolitic structures—
based on four-connected nets, but usually with added constraints such as an upper bound on
the lattice energy or topology. Compared to the experimental zeolites, the number of hypothetical
zeolitic structures is much larger and rapidly growing. In the first such database published, by
Li et al. [59–61] and available at http://mezeopor.jlu.edu.cn/hypo/, two sets of hypothetical
zeolite structures are provided [61,62]. The first set is generated by the FraGen algorithm, which
is based on Monte Carlo direct space structure modelling [63]. The second set is composed of
so-called ABC-6 structures, which are enumerated through a material genome approach [64].
The number of all the ABC-6 structures is 84 292. Besides their structures in CIF format, all
hypothetical structures are assembled in an Excel spreadsheet listing their properties, such as
stacking layers, stacking sequences, space groups, cell dimensions, channel openings, framework
energies, framework densities, stacking compactness and the constituent cages [61].

A second hypothetical zeolite structure database, available at http://www.hypothetical
zeolites.net, was generated by Treacy and Foster [65,66]. It contains 5 million different
frameworks, triaged into ‘bronze’ and ‘silver’ sets, depending on their feasibility based
respectively on a specifically designed cost function and force-field energy minimization. The
two sets contain 5 389 408 bronze and 1 270 921 silver structures, and have been used as starting
points for a series of theoretical surveys of zeolitic frameworks [67] and related four-connected
frameworks [68,69]. Using the Monte Carlo approach, Earl et al. have developed a systematic
computational procedure to search through unit cells with different space group symmetries
[70], called the symmetry-constrained intersite bonding search (SCIBS) approach. They have
used it to generate a third database of 2.6 million zeolite-like materials that have topological,
geometrical and diffraction characteristics that are similar to those of known zeolites [71]. All
three hypothetical zeolite databases are maintained by individual research groups, and are not
open to external submissions of new structures.

Besides the aluminosilicate zeolites, open-framework aluminophosphates, or AlPOs,
constitute an important class of microporous inorganic materials with a variety of structures
ranging from neutral zeolites to anionic frameworks. The AlPO framework is not only limited
to Al and Si as tetrahedral atoms: the upper limit of pore size can go beyond 12-membered rings,
and the primary building units are not restricted to tetrahedra. This gives the AlPO family a rich
variety of structural architectures and physico-chemical properties. There is an AlPO database,
available online at http://mezeopor.jlu.edu.cn/alpo/, developed by Y. Li, J. Yu and R. Xu. It
contains over 200 experimental AlPO structures reported in the literature [72]. In addition to
general information, such as formula, space group, cell parameters and atomic coordinates, this
database also includes more detailed structural information, such as coordination environment,
Al/P ratio, stacking sequences for two-dimensional structures and coordination sequences.
Simulated XRD reflections and references are also included to aid the identification of samples
of users.

(b) Metal-organic frameworks
MOFs appeared almost 30 years ago, and designate a class of materials composed of inorganic
nodes linked by organic ligands. These are a novel generation of materials, with promising
applications to follow zeolites in catalysis and adsorption-related applications. Since their
discovery, the growth in the number of MOF structures reported in the Cambridge Structural
Database (CSD) has been staggering, as shown in figure 3. The latter contains more than 900 000
structures of small molecule crystal structures and materials, among which 70 000 MOF materials

http://mezeopor.jlu.edu.cn/hypo/
http://www.hypotheticalzeolites.net
http://www.hypotheticalzeolites.net
http://mezeopor.jlu.edu.cn/alpo/
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can be found. Each crystal structure undergoes extensive validation and cross-checking by expert
chemists and crystallographers to ensure that the database is maintained to the highest possible
standards. Apart from X-ray, neutron diffraction analyses and three-dimensional structure,
every entry is enriched with bibliographic, chemical and physical information. Even though all
published MOF structures are collected in the CSD, it is not easy to distinguish them from the
rest of the structures in the CSD. In this vein, Watanabe et al. have extracted 30 000 extended
MOF compounds from the CSD, among which 1163 MOF materials were applied for CO2/N2
separation [74]. In 2013, Goldsmith et al. published an automated approach for screening 20 000
porous structures in the CSD useful for hydrogen storage [75]. This requires the use of algorithms
for virtual solvent removal, and relies on an established empirical correlation between excess
hydrogen uptake and surface area.

In 2014, Chung et al. developed a curated database of MOF structures, named the
‘Computation-Ready Experimental MOFs’ (CoRE MOF) database; it is available at https://
gregchung.github.io/CoRE-MOFs/. It contains over 6000 three-dimensional MOFs, with solvents
and templating agents cleaned, and with a pore limiting diameter (PLD) larger than 2.4 Å [76]. The
protocol used to generate the database, represented in figure 4, is the following: (i) identify and
extract MOF structures from CSD, based on atomic types and bonds present; (ii) remove solvent
molecules and included templates; (iii) in some cases, remove disorder. Several recent studies
have used this database as a starting point [77,78]. Additional computational data can also be
added to the database, as did the Sholl group by computing and publishing point charges derived
from periodic DFT calculations for more than 2000 structures in the CoRE MOF database [79]. This
allows for easier reuse by other research groups, as a starting point for adsorption calculations of
polar molecules, for example.

Despite the importance of these CSD-derived databases, they are not integrated within the
CSD, and thus require manual updates over time, as new entries are added to the CSD. To

https://gregchung.github.io/CoRE-MOFs/
https://gregchung.github.io/CoRE-MOFs/


10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20180220

................................................................

CoRE MOF
database

Cambridge
Structural
Database

ch
em

ic
al

 b
on

d 
an

al
ys

is

cl
ea

ni
ng

 p
ro

to
co

ls

3D
 f

ra
m

ew
or

k 
de

te
ct

io
n

po
re

 c
ha

ra
ct

er
iz

at
io

n

>600 k
structures

>20 k
structures

>60 k
structures

ABAVIJ

ZESFUY

ZIHTEP

ZNGLUD01

ZUQVAI

ZUQVIQ

ZURQOS

ZURROT

ABAVOP

ABEMIF

ABEXEM

ABEXUC

ABEXUC

ACAKUM

5109
structures

Figure 4. Schematic illustration of the CoRE MOF database construction. Reprinted with permission from [76].
Copyright c© 2014 American Chemical Society. (Online version in colour.)

address this deficiency, Moghadam et al. have recently implemented seven criteria for MOFs
embedded within a custom CSD Python Application Programming Interface (API) workflow [73].
The constructed CSD MOF is currently integrated into the CCDC’s (Cambridge Crystallographic
Data Centre) structure search program ConQuest, which allows for tailored structural queries
and visualization. CSD MOF thus presents the most complete collection of MOFs, and will
stay synchronized with the CSD as time goes by. The authors have also developed an array of
computational algorithms in order to remove the solvent molecules from the CSD MOF subset,
and then to calculate the geometric and physical properties for all the structures in the database.

Finally, we should note here that some effort has also been devoted to designing hypothetical
MOFs structures. In this quest, Wilmer et al. have generated a database of 137 953 hypothetical
MOF structures from 102 different building blocks, containing secondary building units (SBU)
and organic linkers [80]. The authors then used this database as a starting point for computational
screening, with the goal of identifying the best candidates for specific applications. This was
applied, for example, to the cases of hydrogen storage, methane storage and adsorption/stability
of water [81–83]. However, once a computational screening approach has identified possible
targets, the design of synthesis protocol for these hypothetical materials, as well as their feasibility,
is still often a complex issue.

(c) The Materials Project
For other crystalline compounds, and for inorganic solids in particular, there have been a large
number of databases, often with a specific focus on a particular class of materials. Most—but not
all—are dedicated to experimental structures and properties. They are briefly reviewed in [84],
for the interested reader. We want to focus here on a recent development, the development of the
Materials Project, which provides a material database as well as an open API (and web portal) to
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computed information on known and predicted materials. As we are writing this, it includes
information about 86 371 inorganic compounds, and it is regularly updated with additional
entries. It also aggregates nanoporous structures from several databases, including CoRE MOFs,
hypothetical MOFs and zeolites described in the previous sections, as well as computational
predicted porous polymeric networks (PPNs). The main goal of this database is to accelerate
advanced material discovery and deployment [85]. Classes of materials that feature a specific
focus include battery materials, intercalation electrodes and conversion electrodes.

The database is open—after registration—and accessible through its own open-source API. A
high-quality reference implementation of this API is provided as part of the open-source Python
Materials Genomics (pymatgen) material analysis package, available at http://pymatgen.org/. In
addition to the Materials Project API, pymatgen is a generic material-oriented Python library, with
classes for the representation of elements, sites, molecules and periodic structures, input/output
support for several common file formats, analysis tools for electronic structure and physical
properties, etc. For non-programmers, the Materials Project also includes a web front-end at
https://materialsproject.org/, through which one can access the large dataset. Properties, such as
space group, X-ray diffraction, band structures and elastic properties, can be browsed or searched.
This architecture is extensible; for example, our group has recently provided an integration of the
online ELATE application for the analysis and visualization of elastic tensors [86]. This ELATE
analysis and visualization is linked from every Materials Project entry that contains elastic data,
i.e. every crystalline solid for which the elastic stiffness tensor has been computed by DFT
calculations. In 2015, Jong et al. reported elastic properties for 1181 inorganic compounds [87].
This number has since grown, and the database currently contains elastic information for 13 934
inorganic compounds—and this number is still growing.

4. Machine learning for property prediction
While the databases of structures, both experimentally determined and hypothetical, grow
at a fast pace, the efforts to add physical and chemical properties of these materials in
databases are happening on a longer timescale. The current theoretical chemistry methods,
using microscopic (quantum chemistry and classical molecular modelling) and mesoscopic
scales, make it possible to predict and understand the physical and chemical behaviour of
given materials that already exist. However, these methods are computationally intensive, and
their use on a very large scale is somewhat limited. Computational screening studies based on
existing databases, as we have described below, are often limited to very simple descriptors of
a material’s performance for a given application. They are often used in a multi-stage strategy,
where filters of increasing complexity and computational cost are applied successfully. For
example, in the case of adsorption, studies will focus first on pore space and accessible area
(geometric descriptors), then identify among those best-performing candidates the ones suitable
for adsorption based on Grand Canonical Monte Carlo simulations. A similar strategy was
applied by Davies et al. for the screening of stoichiometric inorganic materials for water splitting,
where low-computational cost filters based on electronegativity, electronic chemical potential and
atomic solid-state energy [88].

To go beyond these methods and identify novel materials for targeted applications, there
is thus a need to develop active methods for property prediction based on structure and
chemical composition, bypassing quantum calculations and classical molecular simulations—
at least during an initial high-throughput screening step. In order to develop such methods,
databases are useful in two different ways: first, databases of physical and chemical properties
are necessary in order to train, benchmark and validate the new prediction methods. Second,
larger databases of hypothetical structures are needed as a basis for large-scale screening, once
the property prediction methods are adequate.

With this goal in mind, machine learning appears as a powerful tool for predicting chemical
and physical properties for large number of materials, i.e. at low computational cost. Neural
networks—already presented in §2—are a class of machine learning algorithms, but many others

http://pymatgen.org/
https://materialsproject.org/
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exist. Machine learning is the generic term used for algorithms that generate another algorithm,
in order to progressively improve their performance for a task they have not been explicitly
programmed to perform. In the most commonly used family of machine learning methods,
called supervised learning, the algorithm generated is called the predictor. It takes a set of input
descriptors, and maps them to the required output. This output is usually the numeric value of
a physical property in our case, but it can also be the classification of the input in a given class.
When using machine learning on chemical systems, the descriptors can take multiple forms: local
descriptors such as atomic positions, bond length, angle or dihedral angles; global descriptors like
mass density, largest included sphere in a porous framework or elastic properties; and topological
descriptors such as ring size distribution. As we said, machine learning algorithms generate
predictor algorithms from a set of reference input and output data. The idea is to train the machine
learning algorithm on a subset of the data, and then test the generated predictor on the remaining
part of the reference data. This allows us to evaluate the accuracy of the predictor. For more
information on machine learning and its usage in molecular and materials science, we refer the
interested reader to the very pedagogical review by Butler et al. [89].

Within the fields of physics and chemistry, machine learning has been applied to a large
diversity of applications. On the computational side, research is ongoing on the use of machine
learning to improve electronic structure calculations by bypassing the Kohn–Sham equations
[90], developing machine-learned functionals [91] and creating adaptive basis sets [92]. Other
applications in chemistry include the extraction of chemical data (structures, reactions, etc.) from
published work [93], the prediction of novel synthetic pathways [94], the design of catalysts
[95], etc. In 2016, Jong et al. used machine learning techniques to predict elastic properties
(bulk and shear modulus) for inorganic compounds in order to accelerate material discovery
and design [96]. However, few studies have focused so far on framework materials and their
physical properties. Recently, Evans et al. [97] used a machine learning algorithm to predict elastic
properties (such as the bulk modulus and shear modulus) of 590 448 hypothetical pure-silica
zeolites, using an accurate training set of elastic properties determined with DFT calculations
[98]. Evans combined the GBR (gradient boosting regressor) approach using regression trees and
a set of local, structural and porosity-related descriptors, and their results highlighted several
important correlations and trends in terms of stability for zeolitic structures. Romain Gaillac
extended this to predict the auxeticity and the Poisson’s ratio of more than 1000 zeolites [99].
These recent advances, combined with the availability of DFT-computed elastic tensors for a
large number of inorganic materials within the Materials Project, create new opportunities for
computationally assisted material discovery and design. We should also note here, for the sake
of completeness, that unsupervised machine learning has also been applied to chemical questions:
such techniques take a dataset as input and identify hidden structures in the data—e.g. clustering
of data points or structures by similarity [100,101].

5. Conclusion
We have given here a short overview of the current state of methodologies for modelling
framework materials at multiple scales and tried to highlight some of the common themes as well
as differences between this rapidly expanding class of materials and other inorganic solids. It is
clear from the examples listed that the diversity of modelling methods is also growing to match
the rapid pace of experimental developments, and the increasing complexity of the systems and
phenomena studied. However, while modelling strategies develop at all length and time scales,
from the microscopic to the macroscopic, the links between these simulation scales are still rather
ad hoc, and comprehensive, coherent multi-scale simulation strategies are still the exception, rather
than the norm. Just as experimental and computational tools are complementary in providing a
large variety of viewpoints on a given material, studies containing multiple simulations strategies
at different scales are appearing, which provide a very deep understanding of the macroscopic
properties of a material and its microscopic origins.
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